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Introduction

Satisfiability Modulo Theories (SMT)

The next generation of verification engines.

SAT solvers + Theories

Arithmetic

Arrays

Uninterpreted Functions

Some problems are more naturally expressed in SMT.

More automation.
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Applications

Applications have different requirements.

Predicate abstraction

Fast when unsat.

May be incomplete.

Examples: Microsoft SLAM/SDV (device driver verification).

Testing

Fast when sat.

Model generation.

May be unsound.

Examples: Microsoft MUTT and Sage.
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Applications (cont.)

Extended Static Checking.

Fast when sat & unsat.

Must be sound.

“Counterexamples” (execution trace).

Incompleteness false alarms.

Examples: ESC/Java, Microsoft Spec# and ESP.

Bounded Model Checking (BMC) & k-induction.

Planning & Scheduling.

Symbolic Simulation.

Equivalence Checking.
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Roadmap

Background

Architecture

Implementation Techniques

Applications
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Language

A signature Σ is a finite set of: function symbols ΣF = {f, g, . . .},

predicate symbols ΣP = {p, q, . . .}, and an arity function

Σ 7→ N .

Function symbols with arity 0 are called constants.

A countable set V of variables {x, y, . . .} disjoint of Σ.

Terms:

t := f(t1, . . . , tn) | x

Formulas:

φ := p(t1, . . . , tn) | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | ∃x : φ1 | ∀x : φ1

Free (occurrences) of variables in a formula are those not bound by

a quantifier.

A sentence is a first-order formula with no free variables.
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Theories

A (first-order) theory T (over a signature Σ) is a set of (deductively

closed) sentences (over Σ and V ).

Let DC(Γ) be the deductive closure of a set of sentences Γ.

For every theory T , DC(T ) = T .

A theory T is consistent if false 6∈ T .

We can view a (first-order) theory T as the class of all models of

T (due to completeness of first-order logic).
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Models (Semantics)

A model M is defined as:

Domain S: set of elements.

Interpretation fM : Sn 7→ S for each f ∈ ΣF with

arity(f) = n.

Interpretation pM ⊆ Sn for each p ∈ ΣP with arity(p) = n.

Assignment xM ∈ S for every variable x ∈ V .

A formula φ is true in a model M if it evaluates to true under the

given interpretations over the domain S.

M is a model for the theory T if all sentences of T are true in M .
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Satisfiability and Validity

A formula φ(~x) is satisfiable in a theory T if there is a model of

DC(T ∪ ∃~x.φ(~x)). That is, there is a model M for T in which

φ(~x) evaluates to true, denoted by,

M |=T φ(~x)

This is also called T -satisfiability.

A formula φ(~x) is valid in a theory T if ∀~x.φ(~x) ∈ T . That is

φ(~x) evaluates to true in every model M of T .

T -validity is denoted by |=T φ(~x).

The quantifier free T -satisfiability problem restricts φ to be

quantifier free.
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Combination of Theories

In practice, we need a combination of theories.

Examples:

x+2 = y ⇒ f(read(write(a, x, 3), y−2)) = f(y−x+1)

f(f(x) − f(y)) 6= f(z), x+ z ≤ y ≤ x⇒ z < 0

Given

Σ = Σ1 ∪ Σ2

T 1, T 2 : theories over Σ1,Σ2

T = DC(T 1 ∪ T 2)

Is T consistent?

Given satisfiability procedures for conjunction of literals of T 1 and

T 2, how to decide the satisfiability of T ?
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Preamble

Disjoint signatures: Σ1 ∩ Σ2 = ∅.

Stably-Infinite Theories.

Convex Theories.
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Stably-Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable in an

infinite model.

Example. Theories with only finite models are not stably infinite.

T2 = DC(∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)).

The union of two consistent, disjoint, stably infinite theories is

consistent.
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Convexity

A theory T is convex iff

for all finite sets Γ of literals and

for all non-empty disjunctions
∨

i∈I xi = yi of variables,

Γ |=T

∨

i∈I xi = yi iff Γ |=T xi = yi for some i ∈ I .

Every convex theory T with non trivial models (i.e.,

|=T ∃x, y. x 6= y) is stably infinite.

All Horn theories are convex – this includes all (conditional)

equational theories.

Linear rational arithmetic is convex.
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Convexity (cont.)

Many theories are not convex:

Linear integer arithmetic.

y = 1, z = 2, 1 ≤ x ≤ 2 |= x = y ∨ x = z

Nonlinear arithmetic.

x2 = 1, y = 1, z = −1 |= x = y ∨ x = z

Theory of Bit-vectors.

Theory of Arrays.

v1 = read(write(a, i, v2), j), v3 = read(a, j) |=

v1 = v2 ∨ v1 = v3
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Convexity: Example

Let T = T 1 ∪ T 2, where T 1 is EUF (O(nlog(n))) and T 2 is

IDL (O(nm)).

T 2 is not convex.

Satisfiability is NP-Complete for T = T 1 ∪ T 2.

Reduce 3CNF satisfiability to T -satisfiability.

For each boolean variable pi add the atomic formulas:

0 ≤ xi, xi ≤ 1.

For a clause p1 ∨ ¬p2 ∨ p3 add the atomic formula:

f(x1, x2, x3) 6= f(0, 1, 0)
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Nelson-Oppen Combination

Let T 1 and T 2 be consistent, stably infinite theories over disjoint

(countable) signatures. Assume satisfiability of conjunction of

literals can decided in O(T1(n)) and O(T2(n)) time respectively.

Then,

1. The combined theory T is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in T can be

decided in O(2n2

× (T1(n) + T2(n)).

3. If T 1 and T 2 are convex, then so is T and satisfiability in T is

in O(n4 × (T1(n) + T2(n))).
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Nelson-Oppen Combination Procedure

The combination procedure:

Initial State: φ is a conjunction of literals over Σ1 ∪ Σ2.

Purification: Preserving satisfiability transform φ into φ1 ∧ φ2,

such that, φi ∈ Σi.

Interaction: Guess a partition of V(φ1) ∩ V(φ2) into disjoint

subsets. Express it as conjunction of literals ψ.

Example. The partition {x1}, {x2, x3}, {x4} is represented

as x1 6= x2, x1 6= x4, x2 6= x4, x2 = x3.

Component Procedures : Use individual procedures to decide

whether φi ∧ ψ is satisfiable.

Return: If both return yes, return yes. No, otherwise.
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Purification

Purification:

φ ∧ P (. . . , s[t], . . .) φ ∧ P (. . . , s[x], . . .) ∧ x = t,

t is not a variable.

Purification is satisfiability preserving and terminating.

As most of the SMT developers will tell you, the purification step is

not really necessary.

Given a set of mixed (impure) literal Γ, define a shared term to be

any term in Γ which is alien in some literal or sub-term in Γ.

In our examples, these were the terms replaced by constants.

Assume that each satisfiability procedure treats alien terms as

constants.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.

Component procedures: φ1 ∧ ψ and φ2 ∧ ψ are both

satisfiable in component theories.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.

Component procedures: φ1 ∧ ψ and φ2 ∧ ψ are both

satisfiable in component theories.

Therefore, if the procedure return unsatisfiable, then φ is

unsatisfiable.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between SA and SB such that

h(xA) = xB for each shared variable.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between SA and SB such that

h(xA) = xB for each shared variable.

Extend B to B̄ by interpretations of symbols in Σ1:

f B̄(b1, . . . , bn) = h(fA(h−1(b1), . . . , h
−1(bn)))
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between SA and SB such that

h(xA) = xB for each shared variable.

Extend B to B̄ by interpretations of symbols in Σ1:

f B̄(b1, . . . , bn) = h(fA(h−1(b1), . . . , h
−1(bn)))

B̄ is a model of:

T 1 ∧ φ1 ∧ T 2 ∧ φ2 ∧ ψ
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NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.

Purification: no changes.

Interaction: Deduce an equality x = y:

T 1 ⊢ (φ1 ⇒ x = y)

Update φ2 := φ2 ∧ x = y. And vice-versa. Repeat until no

further changes.

Component Procedures : Use individual procedures to decide

whether φi is satisfiable.

Remark: T i ⊢ (φi ⇒ x = y) iff φi ∧ x 6= y is not satisfiable in

T i.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.

The proof now is identical to the nondeterministic case.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.

The proof now is identical to the nondeterministic case.

Sharing equalities is sufficient, because a theory T 1 can

assume that xB 6= yB whenever x = y is not implied by T 2

and vice versa.
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Roadmap

Background

Implementing SMT solvers

Applications
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Architecture

Preprocessor/Simplifier.

SAT solver.

Blackboard: “bus” used to connect the theories.

Theories:

Arithmetic,

Bit-vectors,

Arrays,

etc.

Heuristic quantifier instantiation.
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Preprocessor/Simplifier

Apply simplification rules:

Normalization:

Sort arguments of commutative operators.

Flat associative operators:

or(p1, or(p2, p3)) or(p1, p2, p3)

Rewrite arithmetic expressions as sums of monomials.

x(y + 3) = 5 3x+ xy = 5

Hash-consing.

Lift term if-then-else.

x = t ∧ C[x] C[t].

etc.
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Preprocessor/Simplifier

CNF translation.

Rewrite formula to simplify atoms that are asserted during the

search.

Example:

x ≥ 0 ∧ (x+ y ≤ 2 ∨ x+ 2y ≥ 6) ∧ (x+ y = 2 ∨ x+ 2y > 4)

 

(s1 = x+ y ∧ s2 = x+ 2y) ∧

(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))

Only bounds (e.g., s1 ≤ 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.
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SMT solvers before SAT breakthrough

Ad-hoc support for boolean combination of literals.

Ad-hoc support for (non-convex) theories.

“Case-splits” should be avoided.

Few real benchmarks.

Breakthrough in SAT solving changed everything.
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Breakthrough in SAT solving

Breakthrough in SAT solving influenced the way SMT solvers are

implemented.

Modern SAT solvers are based on the DPLL algorithm.

Modern implementations add several sophisticated search

techniques.

Backjumping

Learning

Restarts

Watched literals
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The Original DPLL Procedure

DPLL tries to build incrementally a satisfying truth assignment M

for a CNF formula F .

M is grown by

deducing the truth value of a literal from M and F , or

guessing a truth value.

If a wrong guess leads to an inconsistency, the procedure

backtracks and tries the opposite one.
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Lazy approach: SAT solvers + Theories

This approach was independently developed by several groups:

CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), and

Verifun (HP).

It was motivated also by the breakthroughs in SAT solving.

SAT solver “manages” the boolean structure, and assigns truth

values to the atoms in a formula.

Efficient theory solvers are used to validate the (partial)

assignment produced by the SAT solver.

When theory solver detects unsatisfiability → a new clause

(lemma) is created.
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SAT solvers + Theories (cont.)

Example:

Suppose the SAT solver assigns

{x = y → T, y = z → T, f(x) = f(z) → F}.

Theory solver detects the conflict, and a lemma is created

¬(x = y) ∨ ¬(y = z) ∨ f(x) = f(z).

Some theory solvers use the “proof” of the conflict to build the

lemma.

Problems in these tools:

The lemmas are imprecise (not minimal).

The theory solver is “passive”: it just detects conflicts. There is

no propagation step.

Backtracking is expensive, some tools restart from scratch

when a conflict is detected. CMU May 2007 – p.32/66



Blackboard/Bus

The Blackboard/Bus stores the equalities/disequalities known by

the solver.

The set of known equalities is represented as a set of equivalence

classes.

Union-Find data structure.

The bus is used to connect the theories.
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Combining theories in practice

Propagate all implied equalities.

Deterministic Nelson-Oppen.

Complete only for convex theories.

It may be expensive for some theories.

Delayed Theory Combination.

Nondeterministic Nelson-Oppen.

Create set of interface equalities (x = y) between shared

variables.

Use SAT solver to guess the partition.

Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables.
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Combining theories in practice (cont.)

Common to these methods is that they are pessimistic about which

equalities are propagated.

Model-based Theory Combination

Optimistic approach.

Use a candidate model Mi for one of the theories T i and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.

if Mi |= T i ∪ Γi ∪ {u = v} then propagate u = v .

If not, use backtracking to fix the model.

It is cheaper to enumerate equalities that are implied in a

particular model than of all models.
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Model based theory combination: Example

x = f(y − 1 ), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Purifying
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Model based theory combination: Example

x = f(z), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = y − 1
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) {y} yE = ∗2 0 ≤ y ≤ 1 yA = 0

{z} zE = ∗3 z = y − 1 zA = −1

{f(x)} fE = {∗1 7→ ∗4,

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Assume x = y

CMU May 2007 – p.36/66



Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, y, f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f (x ) 6= f (y) {z} yE = ∗1 0 ≤ y ≤ 1 yA = 0

x = y {f (x ), f (y)} zE = ∗2 z = y − 1 zA = −1

fE = {∗1 7→ ∗3, x = y

∗2 7→ ∗1,

else 7→ ∗4}

Unsatisfiable
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) {y} yE = ∗2 0 ≤ y ≤ 1 yA = 0

x 6= y {z} zE = ∗3 z = y − 1 zA = −1

{f(x)} fE = {∗1 7→ ∗4, x 6= y

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Backtrack, and assert x 6= y.

T A model need to be fixed.
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) {y} yE = ∗2 0 ≤ y ≤ 1 yA = 1

x 6= y {z} zE = ∗3 z = y − 1 zA = 0

{f(x)} fE = {∗1 7→ ∗4, x 6= y

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Assume x = z
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, z, f(x), f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) {y} yE = ∗2 0 ≤ y ≤ 1 yA = 1

x 6= y {f(y)} zE = ∗1 z = y − 1 zA = 0

x = z fE = {∗1 7→ ∗1, x 6= y

∗2 7→ ∗3, x = z

else 7→ ∗4}

Satisfiable
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, z, f(x), f(z)} xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) {y} yE = ∗2 0 ≤ y ≤ 1 yA = 1

x 6= y {f(y)} zE = ∗1 z = y − 1 zA = 0

x = z fE = {∗1 7→ ∗1, x 6= y

∗2 7→ ∗3, x = z

else 7→ ∗4}

Let h be the bijection between SE and SA.

h = {∗1 7→ 0, ∗2 7→ 1, ∗3 7→ −1, ∗4 7→ 2, . . .}
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Model based theory combination: Example

T E T A

Literals Model Literals Model

x = f(z) xE = ∗1 0 ≤ x ≤ 1 xA = 0

f(x) 6= f(y) yE = ∗2 0 ≤ y ≤ 1 yA = 1

x 6= y zE = ∗1 z = y − 1 zA = 0

x = z fE = {∗1 7→ ∗1, x 6= y fA = {0 7→ 0

∗2 7→ ∗3, x = z 1 7→ −1

else 7→ ∗4} else 7→ 2}

Extending A using h.

h = {∗1 7→ 0, ∗2 7→ 1, ∗3 7→ −1, ∗4 7→ 2, . . .}
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Simplex: a model base theory solver

Tableau: B and N denote the set of basic and nonbasic variables.

xi =
∑

xj∈N

aijxj xi ∈ B,

Solver stores upper and lower bounds li and ui, and a mapping β

that assigns a value β(xi) to every variable.

The bounds on nonbasic variables are always satisfied by β, that

is, the following invariant is maintained

∀xj ∈ N , lj ≤ β(xj) ≤ uj.

Bounds constraints for basic variables are not necessarily satisfied

by β, but pivoting steps can be used to fix bounds violations.
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Simplex: a model based theory solver

The current model for the simplex solver is given by β.

Bound propagation

Equations + Bounds can be used to derive new bounds.

Example: x = y − z, y ≤ 2, z ≥ 3 x ≤ −1.
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Opportunistic equality propagation

Efficient (and incomplete) methods for propagating equalities.

Notation

A variable xi is fixed iff li = ui.

A linear polynomial
∑

xj∈V
aijxj is fixed iff xj is fixed or

aij = 0.

Given a linear polynomial P =
∑

xj∈V
aijxj , β(P ) denotes

∑

xj∈V
aijβ(xj).
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Opportunistic equality propagation

Equality propagation in arithmetic:

FixedEq

li ≤ xi ≤ ui, lj ≤ xj ≤ uj=⇒ xi = xj if li = ui = lj = uj

EqRow

xi = xj + P =⇒ xi = xj if P is fixed, and β(P ) = 0

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

EqRows

xi = P + P1

xj = P + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)
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Opportunistic theory/equality propagation

These rules can miss some implied equalities.

Example: z = w is detected, but x = y is not because w is not a

fixed variable.

x = y + w + s

z = w + s

0 ≤ z

w ≤ 0

0 ≤ s ≤ 0

Remark: bound propagation can be used imply the bound 0 ≤ w,

making w a fixed variable.
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Non Stably-Infinite Theories in practice

Bit-vector theory is not stably-infinite.

How can we support it?

Solution: add a predicate is-bv(x) to the bit-vector theory (intuition:

is-bv(x) is true iff x is a bitvector).

The result of the bit-vector operation op(x, y) is not specified if

¬is-bv(x) or ¬is-bv(y).

The new bit-vector theory is stably-infinite.
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Precise Lemmas

Lemma:

{a1 = T, a1 = F, a3 = F}is inconsistent ¬a1 ∨ a2 ∨ a3

An inconsistent A set is redundant if A′ ⊂ A is also inconsistent.

Redundant inconsistent sets Imprecise Lemmas Ineffective

pruning of the search space.

Noise of a redundant set: A \ Amin.

The imprecise lemma is useless in any context (partial assignment)

where an atom in the noise has a different assignment.

Example: suppose a1 is in the noise, then ¬a1 ∨ a2 ∨ a3 is

useless when a1 = F .
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Precise Lemmas

Simple approach: track dependencies.

Record the antecedents ψ1, . . . , ψn of a consequent φ.

It is the same approach used in SAT solvers:

Record the clause C ∨ l used to imply a literal l.

It may be imprecise.
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Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x+ w + 3 = 0 (1)

x+ z + 1 = 0 (2)

x+ y + 1 = 0 (3)
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Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x + w + 3 = 0 (1)

x + z + 1 = 0 (2)

x+ y + 1 = 0 (3)

−w + z − 2 = 0 (4) = (2) − (1)

CMU May 2007 – p.45/66



Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x + w + 3 = 0 (1)

x+ z + 1 = 0 (2)

x + y + 1 = 0 (3)

−w + z − 2 = 0 (4) = (2) − (1)

−w + y − 2 = 0 (5) = (3) − (1)
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Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x+ w + 3 = 0 (1)

x+ z + 1 = 0 (2)

x+ y + 1 = 0 (3)

−w + z − 2 = 0 (4) = (2) − (1)

−w + y − 2 = 0 (5) = (3) − (1)

y − z = 0 (6) = (5) − (4)
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Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x+ w + 3 = 0 (1)

x+ z + 1 = 0 (2)

x+ y + 1 = 0 (3)

−w + z − 2 = 0 (4) = (2) − (1)

−w + y − 2 = 0 (5) = (3) − (1)

y − z = 0 (6) = (5) − (4)

Equation (6) implies that y = z. It depends on (1), (2), and (3).
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Precise Lemmas: simple approach

Example: assume equations (1), (2) and (3) were asserted into the

logical context.

x+ w + 3 = 0 (1)

x+ z + 1 = 0 (2)

x+ y + 1 = 0 (3)

−w + z − 2 = 0 (4) = (2) − (1)

−w + y − 2 = 0 (5) = (3) − (1)

y − z = 0 (6) = (5) − (4)

Equation (6) implies that y = z. It depends on (1), (2), and (3).

Equation (1) is not necessary to derive y = z.
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x+ w + 3 = s1

x+ z + 1 = s2

x+ y + 1 = s3
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x + w + 3 = s1

x + z + 1 = s2

x+ y + 1 = s3

−w + z − 2 = s2 − s1
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x + w + 3 = s1

x+ z + 1 = s2

x + y + 1 = s3

−w + z − 2 = s2 − s1

−w + y − 2 = s3 − s1
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x+ w + 3 = s1

x+ z + 1 = s2

x+ y + 1 = s3

−w + z − 2 = s2 − s1

−w + y − 2 = s3 − s1

y − z = s3 − s1 − s2 + s1
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x+ w + 3 = s1

x+ z + 1 = s2

x+ y + 1 = s3

−w + z − 2 = s2 − s1

−w + y − 2 = s3 − s1

y − z = s3 − s2

The last equation implies y = z when s2 and s3 are equal to 0.
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Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to “name” linear polynomials.

x+ w + 3 = s1

x+ z + 1 = s2

x+ y + 1 = s3

−w + z − 2 = s2 − s1

−w + y − 2 = s3 − s1

y − z = s3 − s2

The last equation implies y = z when s2 and s3 are equal to 0.

This is the approach used in the Simplex based solver.

A similar approach is used to implement incremental SAT solvers.
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Precise “Explanations”

What is the “explanation” for the implied equality below?
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Precise “Explanations”

What is the “explanation” for the implied equality below?

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

CMU May 2007 – p.47/66



Precise “Explanations”

What is the “explanation” for the implied equality below?

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

Explanation: P1 and P2 are fixed and β(P1) = β(P2).
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Precise “Explanations”

What is the “explanation” for the implied equality below?

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

Explanation: P1 and P2 are fixed and β(P1) = β(P2).

The union of the explanations for the lower and upper bounds of

x ∈ vars(P1) ∪ vars(P2).
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Precise “Explanations”

What is the “explanation” for the implied equality below?

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

Explanation: P1 and P2 are fixed and β(P1) = β(P2).

The union of the explanations for the lower and upper bounds of

x ∈ vars(P1) ∪ vars(P2).

Valley proof problem. Example: arithmetic propagated x1 = x2

and x1 = x3 using the rule above.

CMU May 2007 – p.47/66



Precise “Explanations”

What is the “explanation” for the implied equality below?

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

β(P1) = β(P2)

Explanation: P1 and P2 are fixed and β(P1) = β(P2).

The union of the explanations for the lower and upper bounds of

x ∈ vars(P1) ∪ vars(P2).

Valley proof problem. Example: arithmetic propagated x1 = x2

and x1 = x3 using the rule above.

What is the “explanation” for x2 = x3?
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Efficient Backtracking

One of the most important improvements in SAT was efficient

backtracking.

Until recently, backtracking was ignored in the design of theory

solvers.

Extreme (inefficient) approach: restart from scratch on every

conflict.

Other approaches:

Functional data-structures.

Backtrackable data-structures

Trail-stack.

Restore to a logically equivalent state.
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Reduction Functions

A reduction function reduces the satisfiability problem for a theory

T 1 to the satisfiability problem of a simpler theory T 2.

Reduction functions simplify the implementation.

Potential disadvantages:

“Information loss”.

Eager addition of irrelevant information.

Theory of commutative functions.

Deductive closure of: ∀x, y.f(x, y) = f(y, x)

Reduction to T E .

For every f(a, b) in φ, add the equality f(a, b) = f(b, a).
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Reduction Functions: Ackermann’s reduction

Ackermann’s reduction is used to remove uninterpreted functions.

For each application f(~a) in φ create a fresh variable f~a.

For each pair of applications f(~a), f(~c) in φ add the clause

~a 6= ~c ∨ f~a = f~c.

Replace f(~a) with f~a in φ.

It is used in some SMT solvers to reduce T LA ∪ T E to T LA.

Main problem: quadratic number of new clauses.

It is also problematic to use this approach in the context of several

theories and when combining SMT solvers with quantifier

instantiation.
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Reduction Functions: Ackermann’s reduction

Congruence closure based algorithms miss the following inference

rule

f(n) 6= f(m) =⇒
∨

ni 6= mi

Following simple formula takes O(2N) time to be solved using

SAT + Congruence closure.

N
∧

i=1

(pi ∨ xi = v0), (¬pi ∨ xi = v1), (pi ∨ yi = v0), (¬pi ∨ yi = v1),

f(xN , . . . , f(x2, x1) . . .) 6= f(yN , . . . , f(y2, y1) . . .)

It can be solved in polynomial time with Ackermann’s reduction.

A similar behavior is also observed in several pipeline verification

problems.
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Dynamic Ackermann’s reduction

This performance problem reflects a limitation in the current

congruence closure algorithms used in SMT solvers.

It is not related with the theory combination problem.

Dynamic Ackermannization: clauses corresponding to

Ackermann’s reduction are added when a congruence rule

participates in a conflict.

CC Ack Dyn Ack

conflicts time (s) conflicts time (s) conflicts time (s)

c10bi 217232 143.87 6880 6.09 5885 1.75

f10id > 8752181 > 1800 22038 16.20 21220 7.20
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Modularity issues

Modular implementations are attractive.

Potential problem: theories fail to share relevant information.

Arithmetic: i = s+ 1, j = s+ 2

Array theory:

v1 = read(write(a0, i, v0), j), v2 = read(a0, j).

Arithmetic implies i 6= j. If this disequality is shared with array

theory, then v1 = v2.

It is infeasible to propagate all implied disequalities.

Blackboard solution:

Theories post on the blackboard the equations they are

“interested”.
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Delaying inference rules

A commonly used approach: delay the application of “expensive”

inference rules.

Examples:

Inference rules that produce new case-splits.

Non-linear arithmetic.

Potential problem: solver may waste time searching an infeasible

part of the search space.
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Heuristic Quantifier Instantiation

Semantically, ∀x1, . . . , xn.F is equivalent to the infinite

conjunction
∧

β β(F ).

Solvers use heuristics to select from this infinite conjunction those

instances that are “relevant”.

The key idea is to treat an instance β(F ) as relevant whenever it

contains enough terms that are represented in the solver state.

Non ground terms p from F are selected as patterns.

E-matching (matching modulo equalities) is used to find instances

of the patterns.

Example: f(a, b) matches the pattern f(g(x), x) if a and g(b)

are in the same equivalence class.

Disadvantage: it is not refutationally complete.
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Roadmap

Background

Architecture

Applications
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Spec#: Extended Static Checking

http://research.microsoft.com/specsharp/

Superset of C#

non-null types

pre- and postconditions

object invariants

Static program verification

Example:

public StringBuilder Append(char[] value, int startIndex,

int charCount);

requires value == null ==> startIndex == 0 && charCount == 0;

requires 0 <= startIndex;

requires 0 <= charCount;

requires value == null ||

startIndex + charCount <= value.Length;
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Spec#: Architecture

Verification condition generation:

Spec# compiler: Spec# MSIL (bytecode).

Bytecode translator: MSIL Boogie PL.

V.C. generator: Boogie PL SMT formula.

SMT solver is used to prove the verification conditions.

Counterexamples are traced back to the source code.

The formulas produces by Spec# are not quantifier free.
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SLAM: device driver verification

http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture

c2bp C program boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to

check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are

relatively small.
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MUTT: MSIL Unit Testing Tools

http://research.microsoft.com/projects/mutt

Unit tests are popular, but it is far from trivial to write them.

It is quite laborious to write enough of them to have confidence in

the correctness of an implementation.

Approach: symbolic execution.

Symbolic execution builds a path condition over the input symbols.

A path condition is a mathematical formula that encodes data

constraints that result from executing a given code path.
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MUTT: MSIL Unit Testing Tools

When symbolic execution reaches a if-statement, it will explore two

execution paths:

1. The if-condition is conjoined to the path condition for the

then-path.

2. The negated condition to the path condition of the else-path.

SMT solver must be able to produce models.

SMT solver is also used to test path feasibility.

CMU May 2007 – p.61/66



Conclusion

SMT is the next generation of verification engines.

More automation: it is push-button technology.

SMT solvers are used in different applications.

The breakthrough in SAT solving influenced the new generation of

SMT solvers:

Precise lemmas.

Theory Propagation.

Incrementality.

Efficient Backtracking.
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