8/19/2008

" «p

,.‘% L - A Microsoft'
B N jﬂg ol 2 .L. Research

Satisfiability Modulo Theories
solversin
Program Analysis and Verification

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research

Tutorial overview

®

Appetizers
© SMT solving
e Applications

®

Applications at Microsoft Research

®

Background

» Basics, DPLL(®), Equality, Arithmetic,
DPLL(T), Arrays, Matching

®

Z3 — An Efficient SMT solver

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and, inthe U.S. and/or other countri

/or tr es.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

P L Microsoft

A . LA 'fﬂ "
pd____ T}W e .L. Research
H, AR s e IR ANCANCY)

Domains from programs

Bits and bytes 0=((x—1) & x) < x =00100000..00

®

e Arithmetic X+y=y+X

- Arrays read (write(a,i,4),i) =4

e Records mkpair(x, y) = mkpair(z,u) = x=z
© Heaps n—"n'Am=cons(a,n)=m-—"n'
» Data-types car(cons(x,nil)) = x

© Objectinheritance B<AAC<B=C<A

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

8/19/2008

Satisfiability Modulo Theories (SMT)

X+2=Yy

:>read

write(a,

Y=2)=[T{y—x+1

Arithmetic

Arrays Free Functions

17 W L v - _—
AN ! Microsoft:
g R 1% lg0 1] 1e0 Research
nar =TTyl o] ap
M”ms
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 3

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Some takeaways from Applications

© SMT solvers are used in several applications:
e Program Verification
e Program Analysis
© Program Exploration

Software Modeling

®

e SMT solvers are
o directly applicable, or
© disguised beneath a transformation

e Theories and quantifiers supply abstractions
© Replace ad-hoc, often non-scalable, solutions

Program Verification

SThe
m Programmlng System \ .

vc [Boogie]

Win. Modules | = HAVOC

m Bug path ¢

Rustan Leino, Mike Barnet, Michal Moskal, Shaz Qadeer,
Shuvendu Lahiri, Herman Venter, Peter Muller, _
Wolfram Schulte, Ernie Cohen Microsoft:

Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 4

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Test case generation

Run Test and Monitor Execution Path Condition

Path

Constraint
System

Unexplored path

@ Kogl Vigilante

Nikolai Tillmann, Peli de Halleux, Patrice Godefroid
Aditya Nori, Jean Philippe Martin, Miguel Castro,
Manuel Costa, Lintao Zhang

Static Driver Verifier

@ Z3is part of SDV 2.0 (Windows 7)
e Itis used for:
e Predicate abstraction (c2bp)
@ Counter-example refinement (newton)

i!=Enna'.’.>0s i +A,F"i‘|’“\e; {

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 5
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

More applications

© Bounded model-checking of model 2
programs

© Termination

= Security protocols, F#/7 & &
» Business application modeling ri
e Cryptography . “

© Model Based Testing (SQL-Server)
 Verified garbage collectors I

,.:n = fORaIE ' Microsoft:
pd I i wo lI » Research

Appilications

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Microsoft:

e e e .L. Research

Ay el IO VA M
=

Program Exploration with Pex

Nikolai Tillmann, Peli de Halleux

http://research.microsoft.com/Pex

What is Pex

= Test input generator
© Pex starts from parameterized unit tests
© Generated tests are emitted as traditional unit tests

© Dynamic symbolic execution framework
e Analysis of .NET instructions (bytecode)

 Instrumentation happens automatically at JIT
time

e Using SMT-solver Z3 to check satisfiability and generate
models = test inputs

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 7
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://research.microsoft.com/Pex

ArrayList: The Spec

msdrl

.NET Framework Developer Center

Learn

& Printer Friendly Version é\}’ Add To Faveorites (=] Send @ Add Cont

e T
Mierosoft.Ink N .MET Framewaork Class Library
Mierosoft.InkT | ArrayList.Add Method
Microsoft.]Scri
msdn Microsoft.JScri| Adds an object to the end of the ArravList.
< Microsoft.Mana e: System.Collections
= Microsoft.Mana Assembly: mscorlib (in mscorlib.dll)
NET Framework Developer Center soft Manz
Home Lean Community
{nﬁ Printer Friendly Version =k Add To Favorites (=] sSend Add Content...
B Miorosofiinkn | El Remarks Click to Rate and Give Feedback s

Microsoft.1Scri|
Microsoft.1Scri|
Microsoft.Mana

Microsoft.Mana

Microsoft.Mana
Microsoft.Servi

Microsoft.Ink. (=)

Arravlist accepts a null reference (Nothing in Visual Basic) as a valid value and allows
duplicate elements.

1f Count already equals Capacitv, the capacity of the Arraylist is increased by
automatically reallocating the internal array, and the existing elements are copied to the
new array before the new element is added.

If Count is less than Capacity, this method is an O(1) operation. If the capacity needs to
be increased to accommodate the new element, this method becomes an O(n) operation,

B [P where n is Count.

ArrayList: Addltem Test

Learn

4k Add To Favorites () Send (8] Add Cont:

.NET Framework Class Library
ArrayList.Add Method
Adds an object to the end of the ArravList.

e: System.Collections
Assembly: mscorlib (in mscorlib.dll)

class ArraylListTest {
[PexMethod] msdn
void AddItem(int c, object item) { -
var list = new Arraylist(c); .NET Framework Developer Center
list.Add(item); Ty
Assert(list[@] == item); }
} & Printer Friendly Version
< Microsoft.Ink N f
s N Microsoft.Ink.T
class ArraylList { [Microsoft.)Scri
object[] items; Microsoft.JScri|
g . Microsoft.Mana
int count; [Microsaft.Mana
¥l Microsoft.Mana
ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();
items[this.count++] = item; }
L)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

8/19/2008

ArrayList: Starting Pex...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {
var list = new ArrayList(c);
list.Add(item);
Assert(list[@] == item); }

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

class ArraylListTest {

[PexMethod]

void AddItem(int c, object item) { (@,null)
var list = new ArraylList(c);
list.Add(item);
Assert(list[@] == item); }

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 9
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed
[PexMethod] Constraints
void AddItem(int c, object item) {
var list = new ArrayList(c); (,null) !(c<0)
list.Add(item);
Assert(list[@] == item); }

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...; c <@ > false
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed
[PexMethod] Constraints
void AddItem(int c, object item) {
var list = new ArraylList(c); (@,null) !(c<0) 8& 0==
list.Add(item);
Assert(list[@] == item); }

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];

¥

void Add(object item) {
if (count == items.Length) @ == ¢ > true
ResizeArray();

items[this.count++] = item; }

L .
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 10

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed
[PexMethod] Constraints
void AddItem(int c, object item) {
var list = new ArrayList(c); (6,null) !(c<@) & @==C
list.Add(item);

Assert(list[@] == item);
} (el)i} item == item - true

L >

~

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

class ArraylistTest { o - o p Observed
[PexMethod] olve 0
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) 1(c<0) && 0==
list.Add(item); | _
1(c<0) && @!=c
Assert(list[@] == item); } ()
¥
\, v

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

L .
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 1

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

AT Olve constra 0 olve
class ArraylListTest { 0 - o D Observed
[PexMethod] olve 0
void AddItem(int c, object item) { |
var list = new ArrayList(c); (,null) !(c<@) && @==C
list.Add(item); | =
Assert(list[@] == item); } t(c<e) && bl=c (1,null)
¥
\ v
-

~
class ArrayList {

object[] items; Z

int count;

Constraint solver
ArraylList(int capacity) {

if (capacity < @) throw ...; Z3 has decision procedures for
items = new object[capacity]; - Arrays
} - Linear integer arithmetic

- Bitvector arithmetic
void Add(object item) { S o
if (count == items.Length) - (Everything but floating-point numbers)
ResizeArray();

items[this.count++] = item; }
- y,
/\ [J
C
class ArraylistTest { o - o p Observed
[PexMethod] olve 0
void AddItem(int c, object item) { :
var list = new ArraylList(c); (6,null) !(c<0) && ==
list.Add(item); | 1= | 1=
Assert(list[@] == item); } 1(c<0) && 0!=c (1,null) 1(c0) && 0!=c

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];

¥

void Add(object item) {
if (count == items.Length)| @ == ¢ > false
ResizeArray();

items[this.count++] = item; }

L .
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 2
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

class ArraylListTest { 0 - o D Observed
[PexMethod] olve o
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) !(c<@) && B==c
list.Add(item); _ _
Assert(list[@] == item); } 1(c<0) && 0!=c (1,null) 1(c<0) && 0@!=c
¥ c<0

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

class ArraylistTest { o - o p Observed
[PexMethod] olve 0
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) 1(c<0) && 0==
list.Add(item); _ _
Assert(1ist[0] == item); } 1(c<0) && 0!=c (1,null) 1(c0) && 0!=c
} c<0 (-1,null)

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 13
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

/\ [J
C
class ArraylListTest { 0 - o D Observed
[PexMethod] olve 0
void AddItem(int c, object item) {
var list = new ArrayList(c); (,null) !(c<@) && @==C
list.Add(item); | = | 1=
nssert(list[o] == item); } 1(c<0) && 0!=c (1,null) 1(c<0) && 0@!=c
¥ c<0 (-1,null) c<0

class ArrayList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...; c< 0 > true
items = new object[capacity];

}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

k' ’ A
A D
©
class ArraylistTest { o - o p Observed
[PexMethod] olve 0
void AddItem(int c, object item) {
var list = new ArraylList(c); (6,null) !(c<0) && ==
list.Add(item); |
1(c<0) && 0O!=c (1,null 1(c<0) && O!=c
Assert(list[@] == item); } (c<0) ,) (c<0)
} c<0 (-1,null) c<o
\, v
-
class ArrayList {
object[] items;
int count;
ArraylList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();
items[this.count++] = item; }
- J
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 14
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Test more with less effort

* Reduce testing costs

 Automated analysis, reproducible results
* Produce more secure software

» White-box code analysis
* Produce more reliable software

* Analysis based on
contracts written as code

White box testing in practice

How to test this code?
(Real code from .NET base class libraries.)

[SecurigyPermi joprrrribuce(Cecyuritviction. LinkDemand, Flags=5SecurityPermissionFlag.S5erializationFormatter)]

pnblis[REsu\n:ceReadEr (Stream stream)]
{

if (stream==null)
throw new ArgumentHullException("stream");
if (!stream.CanRead)
throw new ArgumentException (Environment.GetResourceString ("Argument StreamNotReadable")):

_resCache = new Dictionary<String, Resourcelocator>(FastResourceComparer.Defaulrt):

_store = new BinaryReader (stream, Encoding.UTFE);
// We have a faster code path for reading resource files from an assembly.
ums = stream as UnmanagedMsmoryStream;

SP&FRFILEFORMAT", "ResgurceReader .ctor(Stream). UnmanagedMemoryStream: "+(_ums!=null));

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 15
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

White box testing in practice

// Reads in the header information for a .resources file. Verifies some
// of the assumptions about this resource set, and builds the class table
// for the
private woi

BCLDebu = null, "ResourceReader is closed!");

BinaryFormatter bf = new BinaryFormatter(null, new StreamingContext (StreamingContextStates.File |

#if !FEATURE_FAL
_typelimitingBinder = new TypeLimitingDeserializationBinder():

ile format.

bf.Binder = _typelimitingBinder:
$endif
_objFormatter = bf;
try {
// Read ResourceManager header
Check F : =
int magicHum = store.ReadInt32();]
if[public virtual int ReadInt32() {
if (m_isMemoryStream) { J
TETEUTTECTIY Lo TILLET
s MemoryStream mStream = m_stream as MemoryStream;
/i BCLDebug.Assert (mStream !'= null, "m stream as MemoryStream != null");
in B
if return mStream. InternalReadInt32();
H
else
{
FillBuffer(4);
1 [return (int) (m buffer[0] | m buffer[l] << & | m buffer[2] << 16 | m buffer[3] << 24):
H

File Edit Wiew Refactor Project Build Data
B-E- S @ A9 @0 b -
_ResourceReaderTestLcs*| -
0!3 MscorlibTests.ResourceReaderTests - =0Parameter\zedTest(byta[] a)

public class ResourceReaderTests
i

Debug Tools Test Window Community Help

[PexTest]
public unsafe void ParameterizedTest
i

PexAssume.IsNotKull (a) ;
fixed (byte* p = a)

using (stream = new UnmanagedMemorySt
{

IXDQ\GGLMIJGJOIGKS Janag E‘:J

kam (p, a.length))

Testinput,
generated by Pex

var reader = new RescurceReader (st
readEntries (reader);

} = Pexit Ctrl+ F8 byte[] a = new byte[l4]:
X Pex » a[0] = 2086;
} = .
Refactor v alll = 202;
. . a[2] = 239;
« nsert Snippet... 23] - 100;
Ready Surround With... T \ a[7] = 64:
8@ Go To Definition
Find All References tparmser zedTest (a))
Breakpoint »
= RunTo Cursor
% Cuw
Ea Copy
Qutlining v
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 6

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Test
F s ﬁ
System
‘ Known J
Paths

Findstonly'real'b
No false warnings

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 17

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Test Input Generatlon by

// Check for magic number
int magicNum = _store.ReadInt32():
if (magicNum '= MagicNumber)
throw new ArgumentException();
Path Condition:
.. AmagicNum !=
0x95673948

PCution Path

high code coverage No false warnings

.. AmagicNum != 0x95673948
.. AmagicNum == 0x95673948

high code coverage No false warnings

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be

regi and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION

18

8/19/2008

Test
F s %)
System
i [Known ﬁJ
Paths

Findstonly'real'b
No false warnings

—

Execution Path

=

dstonly‘real'bu

high code coverage No false warnings

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 19
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Automatic Test Input Generation:

\Whole-proaram, white box code analysis

Test
FD s %]
System

Constraint Solving: Preprocessing

Independent constraint optimization + Constraint
caching (similar to EXE)

» Idea: Related execution paths give rise to "similar”
constraint systems

@Example:Consider x>y ANz>0 vs. x>y Az<=0

» If we already have a cached solution for a "similar"
constraint system, we can reuse it
e x=1,y=0, z=1 s solution for x>y A z>0
° we can obtain a solution for x>y A z<=0 by
e reusing old solution of x>y: x=1, y=0
e combining with solution of z<=0:z=0

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 20
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Constraint Solving: Z3

= Rich Combination: Solvers for uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic, arrays, tuples

e Formulas may be a big conjunction
© Pre-processing step
e Eliminate variables and simplify input format
= Universal quantifiers
e Used to model custom theories, e.g. .NET type system
© Model generation
© Models used as test inputs
© Incremental solving

e Given a formula F, find a model M, that minimizes the value of the
variables x ... x,,

© Push / Pop of contexts for model minimization
° Programmatic API

e For small constraint systems, text through pipes would add huge
overhead

Monitoring by Code Instrumentation

Idtoken Point::X
class Point {int x; inty; call __ Monitor:LDFLD_REFERENCE
public static int GetX(Point p) { Idfld Point::X
if (p != null) return p.X; call __ Monitor::AtDereferenceFallthrough
else return -1; }} br L2
Ic(;tlfken_Monitor::E:tzlrnl\jl::thﬁ(?é Prallams " * 7 “"TranchTarget
brfalse LO Record concrete values 14 w1
Idarg.0) " ~aall information
o ctall(__Monitor:NextArgumer . athod is called
e 'tyry{ (The real C# compiler ar context
call _Monitor:LDARG_0 outputis actually more 1
Idarg.0) complicated.) cion (ef‘erenceException {)
call __Monitor:LDNULL _an __wionitor::AtNullReferenceException
Idnull rethrow
:Ic: __Monitor:CEQ Epilogue » I}EWe s
call __Monitor:BRTRUE | }inally {
brtrue L1 . Monitor::LeaveMethod
call __Monitor::BranchFallthrough Callsto bUI|d
call _Monitor:LDARG_0 path condition
Idarg.0 l L5: Idloc.0
ret

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

AT > LR

gl | T g 0 10 |
' b= T T 0 ae .L. Research

Spec# and Boogie

Rustan Leino & Mike Barnett

\erifying Compilers

A verifying compiler uses automated reasoning to check the
correctness of a program that is compiles.

Correctness is specified by types, assertions, . . . and other
redundant annotations that accompany the program.

Tony Hoare 2004

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2 2
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Spec# Approach for a Verifying Compiler

e
source Langu.age Spec# (annotated C#)
e CH+ goodies = Spec#

e Specifications Spec# Compiler

e method contracts,

e invariants,

e field and type annotations.
Program Logic:

Boogie PL

VC Generator

-
-

®

e Dijkstra’s weakest preconditions. Formulas L
e Automatic Verification h
|
e type checking,
e verification condition generation (VCG), v

e automatic theorem proving Z3

Microsoft:

Research

Basic verifier architecture

Intermediate verification language

Verification condition
(logical formula)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 23
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

\ferification architecture

N

verifier

Bytecode
translator

_ ’ Inference engine

V.C. generator

V ondition

Static program verifier (Boogie)

Modeling execution traces

terminates

diverges

.\'/\0/\ goes wrong

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 24
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

States and execution traces

= State °

@ Cartesian product of variables (x: int, y: int, z: bool)
e Execution trace

= Nonempty finite sequence of states o @

e Infinite sequence of states o—

= Nonempty finite sequence of states o\\
followed by special error state

Command language

ex:=E § e assertP pP{9$ 2
e x:=x+1 o 2P Lo

e
o x:=10 ? assume P

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 25

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Command language

ex:=E .ﬁ eassertP P{ 98 9
P L e—%

®
x

I
x
+
=

e assume P

®

x

[
=
o

ex:=E ? e assertP p{ 9 ¢
x:=x+1 ./’ P Le—%

® assume P

®

®

X

|
=
o

e havoc x °SUT

ﬁ
eS:T
— %
.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2 6

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Reasoning about execution traces

= Hoare triple {P}S {Q} saysthat

every terminating execution trace of S that
starts in a state satisfying P

e does not go wrong, and
e terminates in a state satisfying Q

Reasoning about execution traces

= Hoare triple {P}S {Q} saysthat

every terminating execution trace of S that
starts in a state satisfying P

= does not go wrong, and
e terminates in a state satisfying Q

e Given S and Q, what is the weakest P’ satisfying
{P'rs{aQ}?

e P'is called the weakest precondition of S with
respect to Q, written wp(S, Q)

e to check {P} S {Q}, check P = P’

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other
Theinformato herein is for i

ntries.
nformation al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
terpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION

8/19/2008

27

8/19/2008

Weakest preconditions

e wp(x:=E Q)= QIE/x]

e wp(havocx, Q)= (Vxe Q)

o wp(assertP, Q)= PAQ

e wp(assumeP, Q)= P=Q

ewp(S;T, Q)= wp(S, wp(T,Q))
ewp(SOT, Q)= wp(S, Q) Awp(T,Q)

Structured if statement

if EthenSelse Tend =

assumekE; S
]
assume-E; T

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 28
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Dijkstra's guarded command

fEDS | EDTfi=

assert EvV F;

(

assumeE; S
O
assumeF; T

assign x such that P =
havoc x; assume P

P{ o
; o0 =
-P

assign x such that x*x =y

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 29

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Procedures

@ A procedure is a user-defined command

e procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q

Procedure example

e procedure Inc(n) returns (b)
requires0<n
modifies g
ensures g =old(g) + n

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countri

es.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

30

8/19/2008

Procedures

e procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q

e calla, b, c:= M(E, F G)

=x:=EFE y:=F z2:=¢G

assert P’; where
90 = g, hO = hl : P,I-SPWIt.hX}/,Z,fO,r?(}/Z
haVOC 9, h, r’: S’: t’: . Sy;g:wth E(égll,z,rif]&t,gO,hOfor
assume Q’;
a:=r; bi=s) c=t 'Research

—

Procedure implementations

e procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q
e implementation M(x, y, z) returns (r, s, t) is S
= assume P;
g0:=g; h0:=h; |EEEIR

. * Q'is Q with g0,h0 for old(g), old(h)
S,

assert Q'

syntactically check that S

1 Microsoft:
assigns only to g,h Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks d/ rtr d lemarks in the U.S. and/or other ntries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentatio B ft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any inform tion provided after th d te fth p t t 3 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

While loop with loop invariant

while E

invariant J where x denotes the
do assignment targets of S

S
end

check that the loop invariant holds initially
= assert); <
“fast forward” to an arbitrary

havoc X, assume J, iteration of the loop
(assume E; S; assert J; assume false

[J assume - E check that the loop invariant is
) maintained by the loop body

Microsoft:

Research

Properties of the heap

° introduce:

axiom (V h: HeapType, o: Ref, f: Field Ref o
o # null A h[o, alloc]
=

hl[o, f] = null v h[h[o,f], alloc]);

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr n the U.S. and/or other
Theinformato herein is for i

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

es.
nformation al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

8/19/2008

32

8/19/2008

Properties of the heap

© introduce:

function IsHeap(HeapType) returns (bool);
e introduce:

axiom (V h: HeapType, o: Ref, f: Field Ref

IsHeap(h) A o # null A h[o, alloc]
f—

hlo, f] = null v h[h[o,f], alloc]);

@ introduce: assume IsHeap(Heap)
after each Heap update; for example:
Tr[[Ex:=F]] =

assert ...; Heap[...] :=...;
assume IsHeap(Heap)

Methods

& method M(x: X) returns (y: Y)
requires P; modifies S; ensures Q;
{Stmt}
e procedure M(this: Ref, x: Ref) returns (y: Ref);
free requires IsHeap(Heap);
free requires this # null A Heap[this, alloc];
free requires x = null v Heaplx, alloc];
requires Df[[P 11 A Tr[[P 1];
requires Df[[S 1];
modifies Heap;
ensuresDF[[Q N ATI[[Q1I;
ensures (V{(a) o: Ref, f: Field o e
o # null A old(Heap)[o,alloc] =
Heap[o,f] = old(Heap)[o,f] v
(of) e old(Tr[[ST))
free ensures IsHeap(Heap);
free ensures y = null v Heaply, alloc];
free ensures (Vo: Ref o old(Heap)[o,alloc] = Heap[o,alloc]);

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 33
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Spec# Chunker.NextChunk translation

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));

Il'in-parameter: target object

free requires $Heaplthis, $allocated];

requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || |($Heap[$Heap|this, SownerRef], $inv] <: $Heap]this, $ownerFrame]) ||
$Heap[$Heaplthis, SownerRef], $localinv] == $BaseClass($Heap][this, $ownerFrame])) && (forall $pc: ref :: $pc I= null && $Heap[$pc, $allocated]
&& $Heap[$pc, $SownerRef] == $Heap]this, SownerRef] && $Heap[$pc, SownerFrame] == $Heap[this, $ownerFrame] ==> $Heap[$pc, $inv] ==
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

Il out-parameter: return value

free ensures $Heap[$result, $allocated];

ensures ($Heap[$result, fownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, sownerRef], $inv] <: $Heap[$result, sownerFrame]) ||
$Heap[$Heap[$result, SownerRef], Slocalinv] == $BaseClass($Heap[$result, SownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc,
$allocated] && $Heap[$pc, $ownerRef] == $Heap[$result, SownerRef] && $Heap[$pc, SownerFrame] == $Heap[$result, SownerFrame] ==>
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

1l user-declared postconditions

ensures $StringLength($result) <= $Heap|this, Chunker.ChunkSize];

/I frame condition

modifies $Heap;

free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f I= $inv && $f I= $localinv && $f |= $FirstConsistentOwner && (!IsStaticField($f) ||
lisDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, SownerFrame] == $PeerGroupPlaceholder ||
I(old($Heap)[old($Heap)[$o, SownerRef], $inv] <: old($Heap)[$o, SownerFrame]) || old($Heap)[old($Heap)[$o0, SownerRef], $localinv] ==
$BaseClass(old($Heap)[$o, SownerFrame])) && old($o != this || |(Chunker <: DeclType($f)) || !$IncludedinModifiesStar($f)) && old($o != this || $f
1= $exposeVersion) ==> old($Heap)[$0, $f] == $Heap[$o, $]);

I boilerplate

free requires $BeingConstructed == null;

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && lold($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==>
$Heap[$o, $inv] == $typeof($0) && $Heap[$o, $localinv] == $typeof($0));

free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==
$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o,
$FirstConsistentOwner]);

$Heap[$o, $localinv] } { $Heap[$o, $inv] } old($Heap)[$o, $allocated] ==> old($Heap)[$0, $inv] == $Heap[$o, $inv] &&

$Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot,
$ownerFrame] } { $Heap[$ot, $ownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, SownerFrame] != $PeerGroupPlaceholder ==>
old($Heap)[$ot, SownerRef] == $Heap[$ot, SownerRef] && old($Heap)[$ot, SownerFrame] == $Heap[$ot, SownerFrame]) &&
old($Heap)[$BeingConstructed, $NonNullFieldsArelnitialized] == $Heap[$BeingConstructed, $NonNullFieldsArelnitialized];

= Quantifiers, quantifiers, quantifiers, ...

© Modeling the runtime

© Frame axioms (“what didn’t change”)

@ Users provided assertions (e.g., the array is sorted)
© Prototyping decision procedures (e.g., reachability,

heaps, ...)
e Solver must be fast in satisfiable instances.
© Trade-off between precision and performance.
e Candidate (Potential) Models

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

34

8/19/2008

: o w) - :
S ’ Microsoft:

S ATl .L. Research
‘7‘ AN e R 0! ap

The Static Driver Verifier
SLAM

By el

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

Overview

o http://research.microsoft.com/slam/

e SLAM/SDV is a software model checker.

e Application domain: device drivers.

© Architecture:
c2bp C program -» boolean program (predicate abstraction).
bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)

@ SMT solvers are used to perform predicate abstraction and to
check path feasibility.

@ c2bp makes several calls to the SMT solver. The formulas are
relatively small.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 35
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example Dothisco?

obey the looking
rule?

do {
KeAcquireSpinLock() ;

nPacketsOld = nPackets;

if (request) {

request = request->Next;
KeReleaseSpinLock() ;
nPackets++;

}
} while (nPackets != nPackets0Old);

KeReleaseSpinLock() ;

Example e

Model checking
Boolean program

do {
KeAcquireSpinLock() ;

W PE (%) {

KeReleaseSpinLock() ;

}
} while (*);

KeReleaseSpinLock() ;

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 3 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example e

Is error path

feasible?

do {
KeAcquireSpinLock() ;
nPacketsOld = nPackets;
if (request) {
request = request->Next;
KeReleaseSpinLock() ;
nPackets++;
}
} while (nPackets !'= nPacketsOld);
KeReleaseSpinLock() ;

Example -

Add new predicate to

Boolean program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;
icya—xe gl # nPackets;
if (request) {
request = request->Next;
KeReleaseSpinLock() ;
b = b 2 false : *;
}
} while (EiSoRESIESENISIIRSSINSONS) ;
KeReleaseSpinLock() ;

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 37
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example e

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

b = true;
b if(*){
KeReleaseSpinLock() ;
b =Db ? false : *;
}
b b } while (!b);

b KeReleaseSpinLock() ;

Exa m ple Model Checking\

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;
b = true;
b if(*){
b
KeReleaseSpinLock() ;
b b =b ? false : *;
}
b Ib } while (!'b);
b KeReleaseSpinLock() ;
b

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 38
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example —

Model Checking

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

b = true;

b if(*){
KeReleaseSpinLock() ;
b =Db ? false : *;

}
b Ib |)} while (!b);

KeReleaseSpinLock() ;

Observations about SLAM

© Automatic discovery of invariants
= driven by property and a finite set of (false) execution paths
o predicates are not invariants, but observations

 abstraction + model checking computes inductive invariants
(boolean combinations of observations)

e A hybrid dynamic/static analysis
° newton executes path through C code symbolically
° c2bp+bebop explore all paths through abstraction

© A new form of program slicing
© program code and data not relevant to property are dropped
© non-determinism allows slices to have more behaviors

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 39
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Syntatic Sugar

goto L1, L2;
if () {
S1; L1: assume(c);
} else { S1;
S2; goto L3;

S3; L2: assume(le);
S2;
goto L3;

/

L3:S3;

Predicate Abstraction: c2bp

@ Given a C program Pand F={p,, ..., p,}.
Produce a Boolean program B(P, F)

®

© Same control flow structure as P.
© Boolean variables {b,, ..., b} to match {p,, ..., p,}.
@ Properties true in B(P, F) are true in P.

®

Each p; is a pure Boolean expression.
Each p; represents set of states for which p; is true.
Performs modular abstraction.

®

®

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 40
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Abstracting Assighments via WP

© Statement y=y+1 and F={ y<4, y<5 }
o {y<d}, {y<5}=((Hy<5} || Hy<4}) ? false : *), {y<4})

© WP(x=¢,Q) = Q[e/x]
o WP(y=y+1, y<5) =

(y<5) [y+1/y] =
(y+1<5) =

(y<4)

WP Problem

© WP(s, p;) is not always expressible via {p,, ...,
Pn}

© Example:
e F={x==0, x==1, x < 5}
o WP(x=x+1,x<5)=x<4

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

es.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

41

8/19/2008

Abstracting Expressions via F

e Implies; (e)
= Best Boolean function over F that implies e.

e ImpliedBy, (e)
= Best Boolean function over F that is implied by e.
e ImpliedBy, (e) = not Implies, (not e)

Implies.(e) and ImpliedBy.(e)

ImpliedBye(e) —

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 42

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Computing Implies{e)

e mintermm=1[1,A...Al, where [, =p, orl,=notp..
e Implies, (e): disjunction of all minterms that imply e.
© Naive approach
© Generate all 2" possible minterms.
e For each minterm m, use SMT solver to check
validity of m=e.
o

Many possible optimizations

Computing Implies{e)

o F={x<y, x=2}

e e:y>1

© Minterms over F
o Ix<y, Ix=2 impliesy>1 @
o x<y, Ix=2 impliesy>1 ©
o Ix<y,x=2 impliesy>1 @
° x<y, x=2 impliesy>1 ¥~

Implies(y>1) = osyrbx=2

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 43
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Abstracting Assighments

o if Implies,(WP(s, p,)) is true before s then
© p,is true afters

o if Implies,(WP(s, !p;)) is true before s then
© p,is false after s

{p;} = Impliesg(WP(s, p;)) ? true :
Implies(WP(s, 'p;)) ? false

*.
’

Assighment Example

Statement: y=y +1 Predicates: {x ==y}

Weakest Precondition:

WP(y=y+1,x==y) =x==y+1
Implies (x==y+1) = false
Impliesg(x!=y+1)

X==y

Abstraction of y =y +1
{x==y}={x==vy} ?false : *;

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr nthe U.S. and/or other es.

The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 44
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Abstracting Assumes

» WP(assume(e), Q) = e implies Q
° assume(e) is abstracted to:
assume(ImpliedBy(e))
° Example:
F = {x==2, x<5}
assume(x < 2) is abstracted to:
assume(!{x==2} && {x<5})

e Given an error path p in the Boolean program B.

Is p a feasible path of the corresponding C program?
e Yes: found a bug.

© No: find predicates that explain the infeasibility.
Execute path symbolically.

Check conditions for inconsistency using SMT solver.

®

®

®

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 45
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

/3 & Static Driver \erifier

o All-SAT

o Better (more precise) Predicate Abstraction
e Unsatisfiable cores

= Why the abstract path is not feasible?

© Fast Predicate Abstraction

Microsoft:

Research

Unsatisfiable cores

@ Let S be an unsatisfiable set of formulas.

e §’ < Sis an unsatisfiable core of S if:
e S’jis also unsatisfiable, and
© There is not §” — S’ that is also unsatisfiable.
= Computing Impliesg(e) with F={p;, p, p; p,}
© Assume p, p,, p3, P, = € is valid
e Thatis p;, p,, p3, P4, —€ is unsat
© Now assume p,, p;, —e is the unsatisfiable core
e Then it is unnecessary to check:
® Py PuP3uPs=E€

° pl' - pz' p3' - p4 =€ Microsoft:
© Dy, Py PP, =€ Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 46
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

,.é- A R /}&”” . ; Microsoft
l = FELS “2 L .L. Research
. " '..1\&’\‘7‘. = { ap

A Verifying C Compiler

Ernie Cohen, Michal Moskal, Herman Venter, Wolfram Schulte
+ Microsoft Aachen + Verisoft Saarbriicken

Microsoft Hypervisor

Hypervisor

Hardware

© Meta OS: small layer of software
between hardware and OS

© Mini: 60K lines of non-trivial
concurrent systems C code

e Critical: must provide functional
resource abstraction

© Trusted: a grand verification challenge

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

47

8/19/2008

Bm
Boot Manager

Dm
Dispatch Manager

ob
Interface ‘ Hypercall Manager ‘ ‘ Object Manager ‘
= Partition el . ot
S Partition Manager Intercept Manager pLastmSH O,
= £ 5
s = . :
S B E Virtual SMaiC
= I8 = Synthetic Interrupt
5 E = Interrupt Controller
= =
Address Am M I
Space Address Manager IS wWe ayere
i Ve
Virtual Virtual Processor
Processor Manager
Virtualization P\ s
; Virtualization
Abstraction Abstraction Layer
Virtualization vm
Base Virtualization Manager
Schedul Thread/b Sch o
che uler rea rocess Scheduler Timer Manager
Resource Mm
Management DAty W Xt =t
S <o
@D =5 = Tr Dbg
Ews wornet o] [] [
L —
= i’ —
= o Hardware T
= - Hardware
Abstraction Abstraction Layer
- cpu Rl st
runime | ot | | iy | [e
Kernel Hic
Base Hypervisor Kernel

What is to be verified?

= Source code
» C + x64 assembly

» Sample verifiable slices:
» Safety: Basic memory safety

» Functionality: Hypervisor simulates a
number of virtual x64 machines.

= Utility: Hypervisor services guest OS with
available resources.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 48
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

2 - .
Microsoft:

SEIA .L. Research
Ay 7ol P VAN ORI T)

HAVOC
Verifying Windows Components

Lahiri & Qadeer, POPL'08,
Also: Ball, Hackett, Lahiri, Qadeer, MSR-TR-08-82.

HAVOC's Architecture

C program Property

Y
Front End

BoogiePL program

Boogie VC Generator

Verification Conditions

Verified 4—I - —» Warning
¥ #8ftan Octect Log

| [= Tosscrpton Twarnng| 5. Source Location | In Function
T asserton mght not hald Darefersched GEJect s nar-nll 20500 ... est001.c(20) Testl_bad
2 assertion mght not hold: _stocated(Ax-a) 20500 ¢ Test2_bad
3 asserton mght not hold: Type Safaty Assertion 0500 ¢ Tasti_bad
4 postcondibon mght not hok: no updated memary kocations 30500 ¢ Testd_bad
5 asserton mght not hold: x->a == § 1050 ¢ Tests_bad
6 postconditon moht not hok: ensures _setur 30500 ¢ Tests_bad
7 30500 ¢ Test7_bad
i 30500 ¢ Tests_bad
5 1050 ¢) Tests_bad
1 0501 c... test0o1.c{110; Testio_bad

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 49
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Heaps and Shapes

typedef struct _LIST_ENTRY{
struct _LIST_ENTRY *Flink, *Blink;
} LIST_ENTRY, *PLIST_ENTRY;

typedef struct _NODEA{
PERESOURCE Resource;
LIST_ENTRY NodeBQueue;

} NODEA, *PNODEA;

typedef struct _NODEB{

PNODEA ParentA;
ULONG State; B &
LIST_ENTRY NodeALinks; y INodeaLnks!

} NODEB, *PNODEB;

#define CONTAINING_RECORD(addr, type, field)\
((type *) ((PCHAR) (addr) -\ .
(PCHAR) (&((type *)0)->Fisld))) Representative shape graph
in Windows Kernel component

Doubly linked lists in Windows Kernel code

Precise and expressive heap reasoning

q IRP IRP

p
mlnnk link
L next —{ next 4—
L prev L prev
state state
PENDING PENDING

e Pointer Arithmetic
g = CONTAINING_RECORD(p, IRP, link)
= (IRP *) ((char*)p — (char*)(&(((IRP *)0)—link)))

e Transitive Closure

Reach(next, u) = {u, u->next, u->next->next, ...}
forall (x, Reach(next,p), CONTAINING_RECORD(x, IRP, link)->state == PENDING)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 50
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Annotation Language & Logic

__requires (NodedA !'= NULL)
© Procedure contracts -
. ops __ensures ((*PNodeB)->Parentd == Noded)
e requires, ensures, modifies “modities (PHodeB)
. . void CompCreateNodeB
e Arbltrary C expressions (PNODEA Noded, PNODEB *PNodeB) ;
e program variables, resources
» Boolean connectives e (e
e quantifiers " nseiarizea
o Can express a rich set of contracts
* APlusage (e.g. lock acquire/release)| " . ..
e Synchronization protocols f anc
assert (_:etlr_x‘(:\:ar; _lzf:_)lm
° Memory safety cdifies T old(dacaptEser(iis
« Data structure invariants (linked list) while (iter 1= pdata>iisn ([
o Challenge: o ooy
* Retain efficiency s alaly
o Decidable fragments [I

ity ta oty to—t =ty t

[N wluliwl
[TRANSITIVE3]
ttuln

wliln Ly

Efficient logic for program verification

[REFLEXIVE| [STEP] [REACH]
— iU f(tr)
Lt Loy

flt=t PERN

i =tz 81Lf(t1)i't2

[cYCLE] [SANDWICH]

t1i»t2iat1

t1 Ltz

© Logic with Reach,
Quantifiers, Arithmetic

ulias ulas

t1 =ta t1 =to

[ORDER]] [ORDER2]

[PENTENN

o Expressive
e Careful use of quantifiers

t1 Ltgi*ts ty Lta sz

i1 i'tz. fzi'tg,

e Efficient logic
e Only NP-complete

[TRANSITIVE3)
to Lh Ltz to i»ti»tl

[TRANSITIVE]] [TRANSITIVEZ)
ty Ltz 2] Lts to]—tl Lt; i LthQ
31i‘t3 to Lth. tnL ta

f. 1 f !

to st oto, tuty Lato

Encoding using quantifiers
and triggers

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: t and/or tr
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

// transitive2

axiom(forall f: [int]int, x: int, y: int, =z: int, w: int :: {ReachBe
} ReachBetween(f, x, y, z) && ReachBetween(f, y, w, z) ==> ReachBetw
) ;

// transitive3|]
axiom(forall f£: [intlint, x: int, y: int, z: int, w: int ::
{ReachBetween (£, %, y, z), ReachBetween(f, x, w, y)}
ReachBetween (£, ¥, y, z) && ReachBetween(f, %, W, y) ==>
ReachBetween (£, x, w, z) && ReachBetween(f, w, y, 2z))7

inthe U.S. and/or other countries.

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

51

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5 , LR

pid___ AELALI .L. Research
-l. AR s e IR ANCANCY)

(ogi

Combining Random Testing
with Model Checking

Aditya Nori, Sriram Rajamani,
ISSTAO8: Proofs from Tests. Nels E. Beckman, Nori, Rajamani, Rob Simmons

DASH Algorithm

Input:
Program P
Propel

¢ Main workhorse: test case
e generation
Construct random tests

* Use counterexamples from
current abstraction to
“extend frontier” and
generate tests

* When test case generation
< eroroathin abstracion fails, use this information to
f = frontier of error path " H " .

refine” abstraction at the
frontier

+ Use only aliases that happen
on the tests!

no

Can extend
test beyond
ontier?

yes

Refine abstraction

3

and/or tr inthe U.S. and/or other countries.

8/19/2008

52

8/19/2008

void LockUnlock(struct ProtectedInt *pi,
int *lockl, int *lock2, int x)

{
1: int do_return = 0;
2: if(pi->lock == lockl){
struct ProtectedInt 3 d?_return =L
{ 4: pi—>lock = lock2;
int *lock;
;Zt N ?C) 5: else if(pi->lock == lock2) {
¥ vi 6: do_return = 1;
’ T: pi->lock = lockl;

}
//initialize all locks to be unlocked
8: *(pi->lock) = 0;

void lock(int *x) 9: *lockl = 0;

{ . =0:
23: if(sx 1= 0) 10: *lock2 = 0;
24: error(); 11: if(do_return) return;
25: *xx = 1;
¥ 12: else {

13: do {

14: lock(pi—>lock) ;

15: if(*lockl ==1 || *lock2 ==1)
void unlock(int *x) 16: erro1:();
c 17: x = *(pi->y);
26: if(*x != 1) 18: i NonDt-Et() i

19: (x(pi=>y))++;
27: error(); 20+ lock(pi->lock);
28: #x = 0; ’ } LeckipiT okl
¥ 21: } while(x != *(pi->y));

}
22: unlock(pi->lock) ;
}

Example

Input:
Program P

abstraction
Constructrandom tests . .
void prove_me(int y)

{

1: do {

2: lock();

3: X =y;

4: if (%) {

5: unlock();
6: y=y +1;

no

T = error path in abstraction .
f = frontier of error path 7: } while (x !=Y) H

8: unlock();

Refine abstraction

L =3

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 53
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example

Input:
Program P

y=1

void prove_me(int y)

{

1: do {

2: lock();

3: X = y;

4: if (%) {

5: unlock();
6: y=y+1;

T = error path in abstraction
f = frontier of error path

7: 1} while (x!=y);
8: unlock();

K¢

no

=(0,1,2,3,4,7,8,9)

Symbolic execution +
Theorem proving

Symbolic execution + Theorem Proving

void prove_me(int y)

{ symbolic memory
1: do {
2: lock(); y Yo
3: X =7¥; lock.state L
4: if (%) { " .
5: unlock();
6: y=y+ 1

} .
7: ¥} while (x!=y); constraints
8: unlock(); x=y)=Wo=Yyo)=T
’ (lockstate!= L) = (L!=L)=F

t=(0,1,2,3,4,7,8,9)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 54
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Input:
Program P
Propert

Construct initial

abstraction

Constructrandom tests

1= error path in abstraction
f = frontier of error path

Refine abstraction

— &

Symbolic execution +
Theorem proving

void prove_me(int y)

{

1: do {

2: lock();

3: X =y;

4: if (%) {

5: unlock();
6: y=y+1;

-~

} while (x
unlock();

- o

Template-based refinement

| p= (lock.state !=L) |

()
o) € o) D
()
()

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

and/or inthe U.S. and/or other countries.

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

55

8/19/2008

Template-based refinement

umm
o o

| p= (lock.state != L) |

Example

Input:
Program P
rt

Construct initial
abstraction

void prove_me(int y)

do {
lock();
X =y;
: if (%) {
5: unlock();
Bl st 6: y=y+i;

7: 1} while (x!=y);
: unlock();

te
yes fi

Refine abstraction

e

t=(0,1,2,3,4,7,<8,p>,9)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 5 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Input:
Program P

Propert:
Constructinitial void prove_me(int y)
abstraction {
1: do {
2: lock();
3: X =y;
4: if (%) {
5: unlock() ;
6: y=y+1;
7: } while (x!=y);
T = error path in abstraction 8: ul'l]-DCk() 3
f = frontier of error path }
—
an extend
test beyond
ves contier? Correct, the

program is

Refine abstraction

Yogi's solver interface

Representation Theorem proving needs
e L » Facts about pointers:

© program locations. © & =X
°Rcl xL © Subsumption checks:

© Control flow graph ° o= WP(v)

e State: L — Formula —set ° ¢ = —WP(, v)

= Symbolic state: each © Structure sharing
location has set of disjoint = Similar formulas in
formulas different states
» Simplification
© Collapse/Reduce formulas

Microsoft:

Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

57

8/19/2008

o i il ' icroso
IO lI - "Research
H, (AN el NS N AW NI Y

Better Bug Reporting with
Better Privacy

Miguel Castro, Manuel Costa, Jean-Philippe Martin
ASPLOS 08

See also: Vigilante — Internet Worm
Containment Miguel Castro, Manuel Costa, Lintao Zhang

Microsoft Windows

Do you want to send more information about
the problem?

Additional details about what went wrong can help
Microsoft create a solution.

fl () Hide Details; Send information Cancel

1 GET /checkout?product=embarassing&
creditcardnumber=1122334455667788...

Example program

int ProcessMessage(int sock, char *msg) {
char url[20];
char host[20]; _
int i0: buffer
if (msg[0] !="G" || msg[1] I="E’
[l msg[2] !="T"|| msg3] |5~

Replay Execution

Extract Path Condition

overflow

return -1; .

msg = msg+4; Solve Path Compute Bits

whilg (msg = 1"&& *msg = ") { Condition Revealed

 @lzmsge: (with 3)

urlfi] = 0;

GetHost(msg, host);

return ProcessGet(sock, url, host); GET /checkout?product= teddvbear 1&

} creditcardnumber: 00102220344011100

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 58
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Finding the buffer overflow

int Err]c;c;isrls[l;ﬂ;];ssage(int sock, char *msg) { u“mnum

char host[20];

int i=0;

if (msg[0] '="G’ || msg[1] =
I msg[2] I="T"|| msg[3] 15/

— buffer
overflow

:assumption (= b0 bv71[8])

(
return -1 :assumption (= b1 bv69[8])
msg = msg+4 :assumption (= b2 bv84[8])
while =" { :assumption (= b3 bv32[8]))
= (G [E [T " 1o (M [\n o
GetHost‘(msg, host); ; o
return ProcessGet(sock, url, host); :assumption (distinct b6 bv10[8] bv32[8])

}
G [E T [om || |

Privacy: measure distance between original crash input and new input

— M-
' Microsoft:

o4 I YT L l... Research
VAl PSR AN R T !

Program Termination 2

Byron Cook

http://www.foment.net/byron/fsharp.shtmi

A complete method for the synthesis of
linear ranking functions. Podelski &
Rybalchenkoy; VMCAI 04

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 59
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Form Byron Cook's blog

Making use of F#'s math libraries together with z3

« Byron @ Microsoft
A short note by Byron Cook « Publications
« Email

Recent work on F#'s math libraries, together with the latest release of 23 make for a pretty powerful mixture,

s CVv
In particular 1 find it interesting that its so easy to combine F#'s polymorphic matrix code together with the * TERMINATOR

powrer of Z3. 1 recently used F#'s new matrix syntax and the new Z3 release in order to re-implement the rank * SLayer
function synthesis engine used within TERMINATOR, The result tumed out to be se concise that I thought it * sbv
would be interesting to the larger F# community. I expect that, in the future, Don will probably pick up this © stam
example and use it as an F# sample. Thus, if you're looking for an up-to-date version of this example check + Home

the F# distribution.

At the high-level we're gaing to build a tool that takes in 3 mathematical relation represented as the
conjunction of linear inequalities. As an example consider "x=0 and x' = x-1 and y'>y", which is a relation
stating that the new value of x is always one less than the old value of x, that x is always positive, and that y
goes up. We're out to automatically prove that this relation is well-founded, meaning that if you apply it
pointwise to any infinite sequence of pairs (x0,y0),(xL,y1),......... that the relation will eventually not hold on a
pair. See recent lecture notes (lecture 1, lecture 2, and lecture 3) for more information.

The underlying algorithm that we'll implement is given in a paper by Podelski and Rybalchenko called "A
complete method for the synthesis of linear ranking functions”. The crux of the paper is in Fig. 1:

In short, the paper encourages us
to think of a relation R as a matrix
of coefficients applied to the pre-

and post-variables. Think of A as input .

the coefficients that effect the program (AA') (1)) = 6

pre-variables in R, and A' the gin

coefficients that effect the post- i exists rational-valued A, and A such that
variables (i.e. the variables with Aha =0

's) . The paper says that if we can MA=0

find a counle of vectors (lamhda 1 - s ~

oes this program Terminate?

X>0Ay>0n
X'=Xx=-1Ay'>y

while (x > 0 && v > 0) {
Xx =x - 1; T
y=v + 1+ z¥z;

~

r—1
r—1

8

~

H‘-&
V VIAIVV

=

0z’ 0y’ —1x Oy 1
12’ 0y —1x Oy 1
1z Oy

Oz
Ox

L

H\
++ 4+ +

o

Qd\
++ 4+ ++
++ 4+ + +
++ 4+ +

|

[y
AR VAR VAN VAN VAN
[es Rl en Bl an B an Bl an}

ly

Microsoft:

Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 60
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Rank function synthesis

0z + 0 + -1z + 0y + 1 < 0
122 + 0 + -1z + 0Oy + 1 < 0
1z + 0y + 1@z + 0y + -1 < 0
0oz + 0 4+ 0x + -1y + 1 < 0
0z + -1y 4+ 0x + 1y + 1 < 0

Can we find [b,
such that the C flzy)
inclusion holds? — f(e'y)

vV VvV
=
8
o~ L~
\-{E\

That is: fle'y) + —flz,y)

1 <
b < 0

0z + 0 + -1z + Oy + 1 < 0
1 + 0y + -z + 0y + 1 < 0 ;o
- — <
b oo 4 1w o+ ooy + 1 <0 C& JEY) @)+ ll) > 8
0 + 0 + Oz + -1y + 1 < 0 —f@y) + <
0z + -1y + 0z + 1y + 1 < 0
Search over linear templates:
A
fla,b) = ca + cob
A
—fla,b) = cza + eq4b
c1 = —lcg
Ca = —164
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

61

8/19/2008

Rank function synthesis

Find C,,C,,C;,Cy

0z + 0/ + -1z + Oy + 1 < 0 ar 4+ ey + e 4+ ey + 1 <0
1 + 0 + -1z + 0y + 1 < 0 e’ 4 e+ b <0
-1 + 0y + 1l + Oy + -1 < 0 g leg + leg + 0 = 0
0z + 0 4+ 0z + -1y + 1 < 0 —la + -l + g = g
’ 1. < les 4+ leyg + =<
Ox + lyY + 0z + 1y + 1 < 0 ley 4 —des + 0 < 0

Search over linear templates:

fla,b) = cia + cob
—f(a,b) = c3a + cqb
c1 = —lecg
Ca = —1C4

dc,,c,,C;,C,, VX, Y, XL Y

’ : <
0z’+0y’+—1x+0y+1§0E1$+C2y+£:xx’i£:;ii23
1w + 0y + —lz + Oy + 1 < 0 ley + les + 0 < 0
-1z’ + 0 + la + 0y + -1 < 0 i —ley + —les + 0 g 0
0z + 0/ + 0z + -1y + 1 < 0 les, + les + 0 < 0
0z + -1y + 0z + 1y + 1 < 0 —leg + —ley + 0 < 0
Search over linear templates:
A
fla,b) = ca + c2b
A
—fla,b) = cza + cqb
(&} = —163
C2 = —104
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 62
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Rank function synthesis — simplified version

1 1 [«
3¢,,C,,C5,C, VX, Y, XL Y Yo
X
0z 4+ 0y + -1z + 0y + 1 < 0 G,
1w + 0y + -lz + Oy + 1 < 0 &
R2 —12 + 0y’+1x+0y+—150:> X
0 + 0 + 0z + —-ly + 1 < 0 &
0z + -1y + 0xr + 1y + 1 < 0 @
X
“e
) P
Search over linear templates: 7
\v
A 7
fla,b) = cla + e2b
A
—fla,b) = cza + cqb
(&} = *163
C2 = —164

Rank function synthesis

3c,,¢c,,C5,C,, VX, Y, X' Y

0z + O + -1z + 0y + 1 < 0
1z + 0y + —-lx + 0y + 1 < 0
RE 12/ + 0y + 1z + 0y + -1 < 0 =
o' + 0 + 0z + -1y + 1 < 0
oz + -1y + 0z + 1y + 1 < 0

v £ x4 oy 4+ x4+ ay + 1 < 0

Farkas’ lemma. R = 4 iff there exist real multipliers
AL, ..., A5 > 0 such that

cp = Z?:l)\ia,;,l VARRRIAY Cqp = Z?:l /\ia,-A A 1< (Z?:O)\tbz)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 63
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Rank function synthesis

Instead solve:3c,,c,,C,,C,, A4, Ay, Ay Ay, A

cy
C2
C3
&
1
C1
C2

Farkas’

5
€1 =20 A A

Al

0My
0Xp
—1X
0\
1
*].Cg
—164

lemma.

Jr

+
+
Jr
+
A
A

R = 4 iff there exist real multipliers
AL, ..., A5 > 0 such that

1hs
0As
—1A;
0As
1hs
A >0
A >0

A

+
+
+
+
+
A
A

04:ZjﬂAmm A IS(ZiﬂMM)

1)
0As
1As
0Xs

1)

A2 >0
Xs >0

+ 0A
-+ 0/\4
+ 0\
IEY
-+ 1)\4
A A3>=0

0As
—1As5
0As
125
].Ag,

+

Rank function synthesis

Instead solve:3c,,c,,C,,C,, A4, Ay, Ay Ay, A

c1
C2
C3
&
1
C1
C2

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

Al

0My
0Xp
—1X
0\
1
*].Cg
—164

Jr

+
+
Jr
+
A
A

1Xs
0As
—1A2
0As
1hs
A >0
A >0

+
+
+
+
+
A
A

—1\s
0As
1A
0A3

—1)s

A2 >0
Xs >0

+ 0A
-+ 0/\4
+ 0\
IEY
-+ 1)\4
A A3>=0

0As
—1As5
0As
125
].Ag,

+

Solver: Dual Simplex for Th(LRA).

See Byron Cook's blog for an F#

program that produces input to Z3

and/or tr

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

inthe U.S. and/or other countries.

8/19/2008

64

5 = I
. y ! et Microsoft:

gl ___ | X190 [0 to0 .L. Research
H. AR s e IR ANCANCY)

Program Analysis as
Constraint Solving

Sumit Gulwani, Saurabh Srivastava, Ramarathnam Venkatesan,
PLDI 2008

Loop invariants

® O(x) =
whlle(C){ F1Vx| 1(X) Ac(X) A S(X, '):l(X')
} » L) T(x)=

Post o (1,x)

-

How to find loop invariant / ?

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

65

8/19/2008

Loop invariants

O(x)= 1(x)
Vx| T(X) AC(X)AS(X,X") = 1 (x")
—c(X) A 1(X) = Post(x)
all.x)

e Assume / is of the form ZJ ax < b

J

e Simplified problem: 3AbVXg, (AX.AX <Db,X)

Loop invariants = Existential

Original: FVxep (1, X)

e
© Relaxed: A bVX@, (AX.AX <D, Xx)
 Farkas” VX(AXx <0 =bx <0)
<IN A, A (b=2+D A4a,)
° Existential: o A b, 1@, (Ab, 1)
Problem: contains multiplication
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks d/ rademarks in the U.S. and/or other ntries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date fth s presentatio B M ftm st respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any inform t n provided after th d te fth p ental t 66
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Loop invariants = SMT solving

= Original: AlVxe,(1,X)

e

Existential: dA,b3Ae,(Ab, 1)

ite(p,,4,0) +
Bounded: JAb, p,, p,, Ps@, (Ab, | ite(p,,2,0) +
ite(p;,1,0)

®

®

Or: Bit-vectors: JA,b, A : BitVec[8].o,(Ab, A)

Program Verification: Example

x:=0;y:=0;
{n=1 Am=1} while (x < 100) {y > 100}
X = X+N;
yi=y+m;
Invariant Template Satisfying Solution Loop Invariant

ap + aX + ayy + asn +a;m=>0 ho—r = . y==X
bo + byx + byy + bsn + bym >0 3,=bg=C4=1, 3=b;=Co="1 m>1
Co+ CX+ Gy +cn+¢m=0 n>1
A + aX + ayy + asn +a;m =0 a;=b,=1,a;=by=-1 y>x
bo + byx + byy + bsn + bym >0 m>n

Invalid triple or

@ +a;x +ay +asn +am=0 UNSAT Imprecise Template

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 67
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

o Bit-vector multiplication

Digression: Bit-vectors and Z3

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Al0] & B[3] Al0] & B[2) A0]&B[1] A[0] & B[0)
» For each sub-term A*B ”J““'””‘ A4Al"“"1 /\;L Al &80
e Replace by fresh vector OUT " ,/// J,/ \/
= Createcircuit for: = sy ﬁh A1 8 80
OUT = A*B P P
e Convertcircuit into clauses: o VY
For each internal gate PV jji
e Create fresh L)
propositional variable |
= Represent gate as o ol Sl o]

clause

{Out[0], ~A[0],~B[0]}, {A[0],~Out[0]}, {B[O],~Out[O]},

Tableau + DPLL =
Relevancy Propagation

LorFoccursin F,
M|F = MI|F it :
k T undefined in M
k
@, -
V i V Pi | M-
i=1 i=1 M|F,C vl = Micw|F.OVE i
—V — = v s undefined n M
Al Ten 1
——p M|FC — M|FC|C it MO
i M|F|CvT — M[F|DVC it lpw €M,
P ~ (e = ¥) . M|F|C = M|FC|C it CgF
L @, | i,
) . MUM |F|CVE = Mlicy|F] MEG
de(er, 2,03) —ite(ip1, P2, P3) . Lis undefined in M
— 0 ite — e
P2 | w1 es 1,72 | -1, s M|F|O = unsat

(Decide)

(UnitPropagate)

(Conflict)

(Resolve)

(Learn)

(Backjump)

(Unsat)

Tableau goes outside in, DPLL inside out

Relevancy propagation: If DPLL sets 0:yvo to true, 6 is marked
as relevant, then first of y, ¢ to be set to true gets marked as
relevant.

Used for circuit gates and for quantifier matching

and/or tr inthe U.S. and/or other countries.

8/19/2008

68

Ll s AR

AT 90 (80 te0

’H. T e O I

8/19/2008

Microsoft:

.L. Research

Abstract Interpretation
and modular arithmetic

See Blog by Ruzica Piskac,

http://icwww.epfl.ch/~piskac/fsharp/

Material based on:
King & Sendergard, CAV 08
Muller-Olm & Seidl, ESOP 2005

Programs as transition systems

= Transition system:

(
L
4
S=[V —>Vval
Rcl xS xS8S xL
OcS

Lo el

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:

locations,
variables,
states,
transitions,
initial states

initial location

and/or tr n the U.S. and/or other

es.
The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 69

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://icwww.epfl.ch/~piskac/fsharp/
http://icwww.epfl.ch/~piskac/fsharp/
http://icwww.epfl.ch/~piskac/fsharp/

Abstract abstraction

» Concrete reachable states: CR: L = 2(8)
© Abstract reachable states: AR:L - A

° Connections:
LU:AxA SA
YA > 20)
a:S >A
a: 2(5) >A where a(S) = U {a(s) | s € S}

Abstract abstraction

@ Concrete reachable states:

CRIx «~O6xAl=1¢,
CRIx « CRIxgAnRExyx1

© Abstract reachable states:

ARfx <« OL(@(X)) A= f,-m-t
ARZx <« a(y(AR fyxp) A R &y xy x 1)

Why? fewer (finite) abstract states

may be registered trademarks and/or trademarks in the U.S. and/or other countries.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or es.
ket conditions, it should not be

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

70

The informat ion herein is for i

8/19/2008

Abstraction using SMT

Abstract reachable states:
AR [init «— OL(@)

Find interpretation M:
M E y(AR £, xp) A R 2y xg x £ A —y(AR £X)

Then:

AR { «— AR ¢ U a(xM)

Abstraction: Linear congruences

= States are linear congruences:
AV =b mod 2™

e Vs set of program variables.
° A matrix, b vector of coefficients [0.. 2™-1]

soft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are

or may be regi: dt and/or tr n the U.S. and/or other ntries.
nformation al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

terpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 7 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

© 2007 Microsoft Corporation. Al rights r

Example

£y <X ¢ «O0;
f:whiley!'=0do [y «Vy&(y-1); c < c+1]
£,

* When at {, :
e yis 0.
@ ¢ contains number of bits in x.

Abstraction: Linear congruences

= States are linear congruences:

(r ML

2X, +3%, =1mod 2° A X, + X, =3mod 2° <

As Bit-vector constraints (SMTish syntax):

(and

(= (bvadd (bvmul 010 x,) (bvmul 011 x;)) 001)
(= (bvadd x, x;) 011)

)

ved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other
Theinformato herein is for information: alpu poses onl Iya nd represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ketco ditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

72

Abstraction: Linear congruences

a(x=1,y=2)éﬁ ﬂmﬂ

*(AV=bmod2™) U (A" V=b" mod 2™)

1 1 0 0

0 1
e Combine: b 0o A o oll*] |o
o -b* 0o A ol |7 |o

X2
0 0 -1 —I 1| 0

X

 Triangulate (Muller-Olm & Seidl)
» Project on x

o = Wy -
v y —t Microsoft:

Nl lxelww .L. Research
H, AR s e IR ANCANCY)

Bounded Model Checking of
Model Programs

£

Margus Veanes

FORTE 08

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr n the U.S. and/or other

es.
The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

73

8/19/2008

Goal:Model Based Development

Integration with symbolic analysis
techniques at design time - Sample protocol document for

smart model debugging SMB2 (a network file protocol)

e Theorem proving

© Model checking

e Compositional reasoning
© Domain specific front ends

. . Messages,
© Different subareas require 35%
different adaptations
© Model programs provide the . .
common framework STCTEC
. . 24%
Motivating example
e SMB2 Protocol Specification Server Details,
o)
e Sweet spot for model-based 21%

testing and verification.

Microsoft:

Research

Symbolic Reachability

—> [

(missing guard)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 74
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Bounded-reachability formula

» Given a model program P step bound k
and reachability condition ¢

Reach(P, ¢ = /\ PJi] \/ ©li])

0<i<k 0<i<k

Pli] =\ (actionli] = f(fili]..... falil) A GhI]
feAp

A olivi =t A eli+1]=1li)

UEV}f UEVP\Vg

Array model programs and quantifier

elimination

© Array model programs use only maps with
integer domain sort.

© For normalizable comprehensions universal
quantifiers can be eliminated using a
decision procedure for the array property
fragment [Bradley et. al, VMCAI 06]

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks d/ rtr d lemarks in the U.S. and/or other

ntries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentatio B ft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any inform tion provided after th d te fth p t t 75
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Implementation using the SMT solverZ3

» Set comprehensions are introduced
through skolem constant definitions using
support for quantifiers in Z3

 Elimination of quantifiers is partial.

© Model is refined if a spurious model is
found by Z3.
» A spurious model may be generated by Z3 if

an incomplete heuristic is used during
quantifier elimination.

A dlfferent example

Model program:

// Model program of walking in a grid until reaching goal
var x as Integer

var y as Integer

var xGoal as Integer

var yGoal as Integer

var xMax as Integer

var yMax as Integer

var yBlocks as Map of Integer to Set of Integer

var xBlocks as Map of Integer to Set of Integer

[Action]
up()
requirey < yMax and not (y in yBlocks (x))
and not (x = xGoal and y = yGoal)
yv=y+ 1
[Action]
Down Q]
requirey > 0 and not (y-1 in yBlocks(x))
and not (x = xGoal and y = yGoal) L |7 PO
y_ =y -1 (= xBlocks8 xBlocks7)
[Action] (gt
Right O T
require x < xMax and not (x in x8locks (y)) R
and not (x = xGoal and y = yGoal) (not (and (and (not (and (= x0 xGoal0) (= y0 yGoal0))))
_ (and (not (and (= x1 xGoal1) (= y1 yGoal1))))
x = x+ 1 (and (not (and (= 2 O,o,:»gu ngygon{g)m
- (and (not xGoald) (0ald))))
[Action] (and (ot (and v
LeftO {and o and (- 5 1G0u) (=18 Y000
. . (and (not (and () 16))
require x > 0 and not (x-1 in xBlocks(y)) 3 Td {ond o and (< 7 3Goul?) (=17 YGoaT)
and not (x = xGoal and y = yGoal) 4) (and (Aot (and (4 35 x0oal6) (= y8 yQoall))))}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 7 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

19 Wy
" awow

— .L. Research

8/19/2008

Microsoft:

Verifying Garbage

Collectors

Chris Hawblitzel

- Automatically and fast

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?Source

Path=%24%2fsingularity%2fbase%2fKernel%2fBartok%2fVerifiedGCs&changeSe

tld=14518

Smgularlty

Safe micro-kernel
® 95% written in C#

all services and drivers in processes

© Software isolated processes (SIPs)
» alluser code is verifiably safe
© some unsafe code in trusted runtime
» processesand kernel sealed at execution

© Communication via channels

= channel behavior is specified and checked
= fastand efficient communication

= Working research prototype
“ not Windows replacement
= shared source download

Bartok

® MSIL - X86 Compiler
BoogiePL

» Procedural low-level language
» Contracts

= Verification condition generator

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:

Garbage Collectors
° Mark&Sweep
= Copying GC

» Verify small garbage collectors
© more automated than interactive provers
© borrow ideas from type systems for regions

channels 3 { 3
‘content web. TCP/IP | network
extension server stack driver

—| _] _| —

g g class

g b libran

| runtime ;runnme | runtime lrunnme

kernel API

Microsoft:

Research

and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 77

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518

8/19/2008

Goal: safely run untrusted code

~ MSIL MSIL: MSFT Intermediary Language

untrusted compiler
code —

v] []

typed x86

ﬁ' /O exception garbage\
handling collector
trusted I | |
computing __J & {} v
base linker, loader
(minimize this!) AV4 V\/V

safety verifier

abstract A ——

B C
graph (root) S —
mark-sweep copying from copying to

A A/'F”

O ! B B

@

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 78
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Garbage collector properties

© safety: gc does no harm
° type safety
e gc turns well-typed heap into well-typed heap
@ graph isomorphism — verified
e concrete graph represents abstract graph
e effectiveness

£3

» after gc, unreachable objects reclaimed |
e termination

e efficiency

not
verified

Proving safety

abstract A ﬂ% —
graph (root) . ==
f$toAbs f $toAbs
concrete | Mem
graph A B
. "=

procedure GarbageCollectMs()
requires MsMutatorinv(root, Color, $toAbs, $AbsMem, Mem);
modifies Mem, Color, $toAbs;
ensure fynction MsMutatorinv(...) returns (bool) {
{ WellFormed($toAbs) && memAddr(root) && $toAbs[root] != NO_ABS
call M && (forall i:int::{memAddr(i)} memAddr(i) ==> Objinv(i, $toAbs, $AbsMem, Mem))
call Sy && (forall {memAddr(i)} memAddr(i) ==> White(Color[i]))

} && (forall izint::{memAddr(i)} memAddr(i) ==> ($toAbs[i]==NO_ABS <==>
Unalloc(Colorlil)))}

function Objinv(...) returns (bool) { memAddr(i) && $toAbs]i] != NO_ABS ==>
... $toAbs[Memli, field1]] != NO_ABS ...

... $toAbs[Meml(i, field1]] == $AbsMem[$toAbs]i], field1] ...}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 79
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Controlling quantifier instantiation

= |dea: use marker

function{:expand false} T(i:int) returns (bool) { true }

= Relativize quantifiers using marker

ﬁmction Gcelnv(Color:[int]int, $toAbs:[int]int, $AbsMem:[int,int]int, \
Mem:[int,int]int) returns (bool) {

WellFormed($toAbs)
&& (forall i:int:{T(i)} T(i) ==> memAddr(i) ==>

Objlnv(i, $toAbs, $AbsMem, Mem)

&& 0 <= Color[i] && Color[i] < 4

&& (Black(Color[i]) ==> !White(Color[Mem(i,0]]) && 'White(Color[Meml[i,1]]))

&& ($toAbsi] == NO_ABS <==> Unalloc(Color[i])))

N 4

Controlling quantifier instantiation

= Insert markers to enable triggers

procedure Mark(ptr:int)
requires Gclnv(Color, StoAbs, SAbsMem, Mem);
requires memAddr(ptr) && T(ptr);
requires StoAbs[ptr] I= NO_ABS;
modifies Color;
ensures Gclnv(Color, StoAbs, SAbsMem, Mem);
ensures (forall i:int::{T(i)} T(i) ==> !Black(Color([i]) ==> Color[i] == old(Color)[i]);
ensures !White(Color[ptr]);
{
if (White(Color[ptr])) {
Color[ptr] := 2; // make gray
call Mark(Mem{[ptr,0]);
call Mark(Mem([ptr,1]);
Color[ptr] := 3; // make black
}
}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 80
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

5 = I
. y ! et Microsoft:

gl ___ | X190 [0 to0 .L. Research
H. AR s e IR ANCANCY)

Refinement Types for
Secure Implementations

http://research.microsoft.com/F,

Jesper Bengtson,
Karthikeyan Bhargavan,
Cédric Fournet,
Andrew D. Gordon,
Sergio Maffeis

CSF 2008

© Executable code has more details than models

© Executable code has better tool support: types, compilers,
testing, debuggers, libraries, verification

© Using dependent types: integrate cryptographic protocol
verification as a part of program verification

@ Such predicates can also represent security-related
concepts like roles, permissions, events, compromises,
access rights,...

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 8 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Example: access control for files

type facts = CanRead of string

» Un-trusted code may call | CanWrite of string

a trusted librar
y let read file = assert(CanRead(file)); ...

let delete file = assert(CanWrite(file); ...
e Trusted code expresses

security policy with let pwd = “C:/etc/passwd”
assumes and asserts let tmp = "C:/temp/temp"
assume CanWrite(tmp)

assume Vx . CanWrite(x) >CanRead(x)

» Each policy violation causes

an assertion failure let untrusted() =
. let vl = read tmp in // ok
> Fystatically prevents any let v2 = read pwd in //CanRead(pwd)

Access control with refinement types

val read: file:string{CanRead(file)} — string
val delete: file:string{CanDelete(file)} — unit
val publish: file:string — unit{Public(file)}

@ Pre-conditions express access control requirements
@ Post-conditions express results of validation

© F, type checks partially trusted code to guarantee that all
preconditions (and hence all asserts) hold at runtime

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 82
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

,\; ‘- - /}l/“;" w ; Microsoft:
X ﬁ\ [¢ 30 1o

: .L. Research
'|_7‘ WAL s - vl PR ANC AT

Models for Domain Specific
Languages with
FORMULA & BAM

Ethan Jackson

FORTE 08

Designing Complex Systems Requires Multiple Abstractions

Automotive system is just processors and their
ommunicatio

Taken from
AGeneral Synthesis Approach for

Forget about the network; think about the

Product lines abstract across families of

software components implementations
Functional architecture taken from AUTOSAR: Screenshot of “Build Your Scion":
http//www.autosar.org ;

http.//www.scion.org

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

83

8/19/2008

Many Modeling Styles are Used to Build Abstractions

O Odu
Feature Diagram

modalsting]
make: stiing]

Car

ECU [Maneuvering | [Gruise Central }
----- [sCritical: ool
memorySize: intager b
[Poosslormion]
o = 5 2
Message

Brake-By-Wire

maxSize: intege:
ecuSends: bool

Instance

A Notorious Problem: How Do We Compose
Abstractions?

nting the legal "'moaels” O .Composition occursvia

Instance of
scpieduling problem

Instance of ECU/Bus
rich syntax

Instance of feature
description

Integration of Multiple Abstractions

For example, this instance must satisfy the constraints of each abstraction used in its
construction.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 84
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

FORMULA is a CLP Language for Specifying, Composing,

and Analyzing Abstractions

bdomain TaskMap {
/// Primitives of the abstraction
Task : (ID).

A domain encapsulates Frocessor @ (D).
psu Taskmap : (ID,ID).
a reusable, composable Constraint : (ID,ID).

constraint system
/// Rules for detecting bad schedules

no_map (Task (x)) :— Task(x), !Taskmap(x,).
bad_map (Task (x),Task(y)) :- Taskmap(x,z), Taskmap(y,z),
Constraint (x,y) .

/// Rules for declaring bad models

malform(no map (x)) - no_map(x) .

| malform(bad map(x,y)) :- bad map(x,y).
/// Endpoints of relations are defined
Task (x), Processor(y) :- TaskMap(x,y) .
Task (x), Task(y) :— Constraint (x,y) .

/// RAsk if there exists a well-formed schedule.

Special function :? Constraint (x,y), Constraint(y,z), !malform(m).

symbols (malform, !

wellform) capture legal

instances in a domain- FORMULA can construct satisfying instances
independent way. to logic program queries using Z3.

Search for satisfying instances are Reduced to Z3

. O ab
2. Construct (partial) architectures that satisfy many domain constraints.
3. Generate design spaces of architectural invariants.

Reduction to Z3 works as follows:

no_map (Task (x)) :— Task(x), !Taskmap(x,). 6 Task (x), Task (y) .,
bad map (Task (x),Task(y)) :— Taskmap(x,z), T Ty, Task(z), Constraint (x,¥),
Constraint (3r¥; . Constraint (y,z), Processor(p),
Processor(q), Processor (xr),
/// Rules for declaring bad models
malform(no_map (x)) :- no_map (x) 4 gaSEBp (x,p), Taskmap (¥, q) ,
malform(bad_map(x,¥)) :- bad_map(f,¥). >3 askmap (z,)

/// Endpoints of relations are defiim S

Task(x), Processor(y) :- TaskMap(x,¥y).

Task(x), Task(y) := Constraint (x,¥) . v

/// Ask if there exists a well-formed schedu 1

:? Constraint(x,y), Constraint(y,z), !malform(m). d
Symbolic backwards chaining yields a set of ml

candidate terms S with the following property

A finite instance exists that satisfies the query Q iff
some subset of S satisfies the query Q. Task(x=1), Task(y=2), Task(z=3),

Processor (p=4), Processor (g=5),
Constraint (1,2), Constraint(2,3),

Once the finite set S is calculated, then S + Q is Tpmab (S TesmeR@es
reduced to SMT and evaluated by Z3.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: t and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

85

W RN ’¥%ﬁ,~ ~— R
P A% lgo (80 100 . Research

AR e SO EVARCURCY)

Background
on SMT

W RN ’¥%ﬁ,~ ~— R
P A% lgo |80 1e0 . Research

AR e SO EVARCURCY)

Pre-requisites and notation

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi and/or inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

86

8/19/2008

Language of logic - summary

e Functions, Variables, Predicates
°fg xyz PRPQ-=
e Atomic formulas, Literals
* P(x,f(y)), —Q(y,2)
e Quantifier free formulas
* P(f(a), b) A c = g(d)
° Formulas, sentences
» Vx. Vy. [P f(x)) v g(yx) = h(y)]

Language: Signatures

= A signature ¥ is a finite set of:
» Function symbols:
zF = {ﬁg/ }
» Predicate symbols:
X = { R Q= true, false, ... }

» And an arity function:
> —>N

© Function symbols with arity O are constants
© A countable set V of variables
e disjoint from X

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 87
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Language: Terms

© The set of terms T(Z¢ ,V) is the smallest set
formed by the syntax rules:

etel i=v veV
| f(tll ceer tn) fe ZF tl’ vees tn el

« Ground terms are given by T(Z; ,9D)

Language: Atomic Formulas

°aeAtoms =P, .., t)
PeXt,. ., teT

An atom is ground if t;, ..., t, € T(Z; D)

Literals are (negated) atoms:
- | e literals :=a|—-a a € Atoms

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 88
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Language: Quantifier free formulas

e The set QFF(Z,V) of quantifier free formulas
is the smallest set such that:

¢ €eQFF = a e Atoms atoms
| = @ negations
| 0 < ¢ bi-implications
| o A ¢ conjunction
o v o disjunction
| o = ¢ implication

Language: Formulas

| VX.@ universal quant.
| Ax. @ existential quant.

 Free (occurrences) of variables in a formula
are theose not bound by a quantifier.

« A sentence is a first-order formula with no
free variables.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

89

8/19/2008

Theories

» A (first-order) theory T (over signature 3) is a set of
(deductively closed) sentenes (over X and V)

° Let DC(I') be the deductive closure of a set of
sentences .
© For every theory T, DC(T) = T

e Atheory T is constistent if false g T

© We can view a (first-order) theory T as the class of
all models of T (due to completeness of first-order
logic).

Models (Semantics)

© A model M is defined as:

© Domain S; set of elements.
Interpretation, M : S" —»S for each f € X, with arity(f) = n
Interpretation PM < S"for each P e £, with arity(P) = n
© Assignment x™ e S for every variable x € V

®

®

© A formula ¢is true in a model M if it evaluates to
true under the given interpretations over the
domain S.

© M is a model for the theory T if all sentences of T
are true in M.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 90
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

T-Satisfiability

= A formula ¢(x) is T-satisfiable in a theory
T if there is a model of DC(T U 3 x ¢(x)).
That is, there is a model M for T in
which ¢(x) evaluates to true.

© Notation:

M E; o(x)

« A formula ¢(x) is T-valid in a theory

Tif V x ¢o(x) € T That is, ¢(x) evaluates
to true in every model M of T

e T-validity:

Er o)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

es.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 9 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Checking validity

= Checking the validity of ¢ in a theory T:

¢ is T-valid

= T-unsat: -

= T-unsat: Vx3yvz3u. ¢ (prenex of —o)
= T-unsat: VxVz. ¢[f(x),g(x,z)] (skolemize)

< T-unsat: ¢[f(a;),g(a;by)] A ... (instantiate)
7AN d)[f(an),g(an,bn)] (:> if compactness)

= T-unsat: OV ... VO, (DNF)
where each ¢; is a conjunction.

Checking Validity — the morale

© Theory solvers must minimally be able to

e check unsatisfiability of conjunctions of
literals.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

92

8/19/2008

Clauses — CNF conversion

We want to only work with formulas in Conjunctive
Normal Form CNF.

Q. X=5<(yYy<3vzZ=X) isnotinCNF

Clauses — CNF conversion

Q. X=5(Yy<3vzi=X)

Equi-satisfiable CNF formula

Q' (—pvX=5)A(pv-aXx=5A
(mpvy<3vzi=X)A
(pv—y<3dAa(pv—-z=X)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 93

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Clauses — CNF conversion

cnf'(p A @) = let (q,F,) = cnf'(o)
(r, F)) = cnf'(@)
p = fresh Boolean variable
in
(P, FrnFya(=pvg)a
(=pvr)a
(=pv—=qv=n)

Exercise: cnf'(¢ v ¢), cnf'(p <> @), cnf'(= @)

Clauses - CNF

= Main properties of basic CNF

e Result F is a set of clauses.
e @ is T-satisfiable iff cnf(¢) is.
e size(cnf(p)) < 4(size(p))

° @ < 3 paycnf(o)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 94
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

5 b= | .
y Microsoft:

ONl ¥ 0w .L. Research
H. AR s e IR ANCANCY)

DPLL - dassigie

© Incrementally build a model M for a CNF formula F (set of
clauses).

e Initially M is the empty assignment

© Propagate: M: M(r) « false
e if (p v—q v—r) € F, M(p) = false, M(q) = true

» Decide M(p) < true or M(p) <« false,
e if pis not assigned.

e Backtrack:
e if (p v—q v—r) € F M(p) = false, M(q) = M(r)= true, (e.g. M =1 —C)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 95
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Modern DPLL — as transitions

© Maintain states of the form:

° M| F - during search

e M||F||C - forbackjumping

© M a partial model, F are clauses, C is a clause.
> Decide M ||F =>MI/?|| F if e F\M

d is a decision marker

© Propagate M || F = MIC|| F

ifl eCeFC=(C vI,ME;-C

Modern DPLL — as transitions

o Conflict M||F=M||F|| C ifCefME —C

®

Learn M ||F||C=M||F C||C i.e addCtoF

®

Resolve Mp© P ||F|[Cv -p =M || F||Cv C

®

Skip Mp || F|[C = M| F||C if —leC

®

Backjump MM'/9|| F || C = M-IC || F

if —/eC and M’ does not intersect with —C

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 9 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Microsoft:

DPLL(E)

= Congruence closure just checks satisfiability
of conjunction of literals.

» How does this fit together with Boolean
search DPLL?

e DPLL builds partial model M incrementally

e Use M to build C*
© After every Decision or Propagate, or
@ When F is propositionally satisfied by M.
» Check that disequalities are satisfied.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other es.

The informat ion herein is for information: aI purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 97
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

E - conflicts

Recall Conflict;
e Conflict M ||F =2 M|| F||C if CeF M &; =C
A version more useful for theories:

e Conflict M ||F =2M|| F||C if Cc-M, = C

E - conflicts

Example

° M = fffta) = a, g(b) = ¢, fffff(a)= a, a =f(a)
° — C = fff(a) = q, fffff(a)=a, a =f(a)
° ke fff(a)=a v fffffa)=a va = f(a)

= Use C as a conflict clause.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 98
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

g Y o=
" Microsoft:

A, ATl .L. Research
‘7‘ AN e R 0! ap

Linear

Ttnmetic

Approaches to linear arithmetic

» Fourier-Motzkin:

© Quantifier elimination procedure
IE<ax At <bx rcx <t’') <ct<at'nct <bt’
Polynomial for difference logic.

Generally: exponential space, doubly exponential
time.

®

®

© Simplex:

Worst-case exponential, but
Time-tried practical efficiency.
Linear space

®

®

®

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other

The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

99

: o w) - :
S ’ Microsoft:

i - ,W“;ifw .L. Research
O .

Comoining
Theory Solvers

Nelson-Oppen procedure

Initial state: L is set of literals over ¥; U %,
Purify: Preserving satisfiability,

convert Linto L' = L; U L, such that

L, eTELV), L, e TE,V)

So Ll M L2 = Vshared < \%
Interaction:

Guess a partition of Vg

Express the partition as a conjunction of equalities.
Example, { x; }, { X5, X3 }, { X4 } is represented as:
WXy # Xy AXy # Xg AXy # Xg AXy = X3

Component Procedures:
Use solver 1 to check satisfiability of L; A v
Use solver 2 to check satisfiability of L, A v

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

100

© 2007 Microsoft Corporation. Al rights r

NO — reduced guessing

© Instead of guessing, we can often deduce the
equalities to be shared.

© Interaction: T, n[;Ex =y
then add equality to v

« If theories are convex, then we can:
© Deduce all equalities.
» Assume every thing not deduced is distinct.
e Complexity: O(n* x T;(n) x T,(n)).

Model-based combination

© Reduced guessing is only complete for convex
theories.

» Deducing all implied equalities may be expensive.

» Example: Simplex — no direct way to extract from just
bounds and

© But: backtracking is pretty cheap nowadays:

o If B(x) = B(y), then x, y are equal in arithmetical
component.

ved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other es.
Theinformato herein is for information: alpu poses onl Iya nd represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ketco ditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

101

8/19/2008

Model-based combination

= Backjumping is cheap with modern DPLL:

o If B(x) = B(y), then x, y are equal in arithmetical
model.

e So let's add x = y to y, but allow to backtrack
from guess.

 In general: if M; is the current model
° M; E x = y then add literal (x = y)d

L L o ["
Microsoft:

S e lee .L. Research
‘7‘ AN e R 0! ap

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other es.

The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 102
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

Theory of arrays

© Functions: 2; = { read, write }
© Predicates: Zp = { =}
e Convention afi] means: read(a,i)

© Non-extensional arrays T,:
° va, i v.write(@,iVv)[i] = v
° Va, i j v.i#j = writea,iv)[j] = afj]

e Extensional arrays: T, = T, +
e va, b. (Vi.ali] =bli]) =>a=>b)

Decision procedures for arrays

» Let L be literals over X = { read, write }
® Find M such that: M =, L

= Basic algorithm, reduce to E:
» for every sub-term read(a,i), write(b,,v) in L
® i #j na = b = read(write(b,v),i) = read(a,i)
© read(write(b),v))) = v
» Find Mg such that
M =g L A AssertedAxioms

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks d/ rtr d lemarks in the U.S. and/or other ntries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentatio B ft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any inform t n provided after th d te fth p t t 103
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

,\; = N Microsoft'
pid ____ Th@ it .L. Research
H. AR vl IR KV AR RICY

Quantijiers
and E-gra pfj
matcning

DPLL(QT) — cute guantifiers

© We can use DPLL(T) for ¢ with quantifiers.

 Treat quantified sub-formulas as atomic
predicates.

 In other words, if Vx.y(x) is a sub-formula if ¢,
then introduce fresh p. Solve instead

P[VXy(X) < p]

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks d/ d lemarks in the U.S. and/or other ntries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date fth s presentatiol B ft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any inform t n provided after th d te fth p t t 104
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

DPLL(QT)

» Suppose DPLL(T) sets p to false

e = any model M for ¢ must satisfy:

M E — Vxy(X)

o = for some sk, M E — y(sk)

 In general: E—p— = y(sk,)

DPLL(QT)

@ Suppose DPLL(T) sets p to true

© = any model M for ¢ must satisfy:

M E Vx.y(x)

o = foreverytermt: M E y(t)

 In general: Ep oy
For every term t.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other es.

The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 105
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

DPLL(QT)

@ Summary of auxiliary axioms:

° E—p— —y(sk) For fixed, fresh sk,
°Ep -yl For every term t.

e Which terms t to use for auxiliary axioms of
the second kind?

DPLL(QT) with E-matching

cEp -yt For every term t.

© Approach:
« Add patterns to quantifiers
= Search for instantiations in E-graph.

Va,i,v { write(a,i,v) } . read(write(a,i,v),i) = v

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other es.

The informat ion herein is for information: al purposes on Iy and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing marl ket conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date ofth is presentation. 106
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

DPLL(QT) with E-matching

°Ep->yt) For every term t.

= Approach:
« Add patterns to quantifiers
« Search for pattern matches in E-graph.

Va,i,v { write(a,i,v) } . read(write(a,i,v),i) = v

° Add equality every time there is a write(b,j,w) term in E.

[Nyl ISR EVAR ORI T

,.‘1 > L Microsoft:
H B e ll 5 Research

293 =An r—’ffjﬂjr{[_[f
SJV/TJQ/VQJJ

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other p oduct names are or may be regi: d t and/or tr n the U.S. and/or other ntries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporatio of the daf t of this presentation. Because ft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the racy of any in f rm. t n provided after th d t of this pre: t on.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

107

Main features

 Linear real and integer arithmetic.

» Fixed-size bit-vectors

» Uninterpreted functions

» Extensional arrays

e Quantifiers

© Model generation

» Several input formats (Simplify, SMT-LIB,
Z3, Dimacs)

e

Extensive API (C/C++, .Net, OCaml)

Microsoft:

Research

Z3: SMT solver - Windows Internet lorer
- Y

O@ ~ (] nttpy/jresearch microsoft.com/projects/z3/
¢ Favorites 3 | @] Customize Links

[ﬁﬂqwhhoa!]EB Tesl‘gzi.. x [T_‘ ! Emu\ateIl:‘rl 5 Y] v 2 @ v |Page v (& Tools v @~

.b\ % || & Live search

Home ¢ Docs Download ¢« Mail « FAQ s Awards s Status e MSR

An Efficient SMT Solver

Introduction

m

73 is a new high-performance theorem prover being developed at Microsoft Research. Z3
supports linear real and integer arithmetic, fixed-size bit-vectors, extensional arrays,
uninterpreted functions, and quantifiers. Z3 is still under development, but it has already been
integrated with Spec#/Boogie, and HAVOC. We are currently integrating Z3 with Pex, SAGE,
Yogi, Vigilante, and SLAM. It can read problems in SMT-LIB and Simplify formats.

Links: m

= Introduction

= Documentation

= Download

= Publications and Slides

= Applications

Microsoft:

Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

108

Supporting material

e http://research.microsoft.com/projects/z3/documentation.html

Microsoft:

Research

Z3: Core System Components

Theories

Bit-Vectors

Rewriting
Simplification Arithmetic

Arrays
E-matching Core Theory
Partial orders
Tuples
SAT solver

Microsoft:

Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

inthe U.S. and/or other countries.

8/19/2008

109

http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html

8/19/2008

Example: C API

for (n = 2; n <= 5; n++) {
printfi{"n = dvn", n);
ctr = E3_mk context{cfg);

Given arrays:

bool al[bool];
bool a2[bool];
bool a3[bool];
bool a4[bool];

bool type = Z3_mk_bool_typeictx):
array_type = Z3_mk_array_typeictxz, bool_type, bool_type);

/* create arrays */
for (1 = 0; 1 < n; 1++) {

Z3_symbol s = Z3_mk_int_symbolictx, 1):

ali] = Z3_mk_constictx, s, array_type): All can be distinct.
+

/* agzert distinct(al0], ..., alnl]) =/ Add:
d = Z23_mk distinctictz, n, al:

printf ("%='n", Z3_ast_to_string(ctx, d)):
Z3_assert_cnstr(ctxz, d); bool a5[bool];
/* context i1z satisfiable if n < 5§ =/
if (Z3_checkictz) == 1_false)

Two of al,..,a5 must
printf{"unsati=fizkble, n: %din", n);

be equal.
Z3_del contest{ctx);

Microsoft:

Research

Example: SMT-LIB

(benchmark integer-linear-arithmetic
:status sat
:logic QF_LIA
:extrafuns ((x1 Int) (x2 Int) (x3 Int)
(x4 Int) (X5 Int))

formula (and (>= (- x1 x2) 1)

(<= (-x1x2)3)

(= x1 (+ (* 2 x3) x5))

(= x3 x5)

(=x2 (* 6 x4))

(benchmark array

:logic QF_AUFLIA

:status unsat

:extrafuns ((a Array) (b Array) (c Array))
:extrafuns ((i Int) (j Int))

:formula (and

= (storeaiv)b)
= (storeajw)q)
= (select b j) w)
(seIectc i) v)

(=
(
(
(=
(not (= b c))

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: d t and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 10
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

SMT-LIB syntax — basics

benchmark ::= (benchmark name
[:status (sat | unsat | unknown)]
slogic logic-name
declaration®*)

e declaration = extrafuns (func-decl*)

| :extrapreds (pred-decl*)

| :extrasorts (sort-decl*)

|

|

D

:assumption fmla
‘formula fmla

e sort-decl n=id - identifier

e func-dec] :=id sort-decl* sort-decl - name of function, domain, range
e pred-dec] :=idsort-decl* - name of predicate, domain

e fmla 2= (and fmla*) | (or fmla*)| (not fmla)

| (if_then_else fmla fmla fmla) | (= term term)
| (implies fmla fmla) (iff fmla fmla) | (predicate term®)

o Term = (ite fmla term term)
| (id term*) - function application
| id - constant

SMT-LIB syntax - basics

= Logics:
© QF_UF — Un-interpreted functions. Built-in
sort U

© QF_AUFLIA — Arrays and Integer linear
arithmetic.

e Built-in Sorts:

 Int, Array (of Int to Int)
© Built-in Predicates:

° <=,>=, <, >,
e Built-in Functions:

° +, % - select, store.

Constants: 0, 1, 2, ...

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 1 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

SMT-LIB —encodings

© Q: There is no built-in function for max or
min. How do | encode it?

e (max x y) is the same as (ite (> x y) x y)

» Also: replace (max x y) by fresh constant
max_x_y add assumptions:
-assumption (implies (> x y) (= max_x_y X))
-assumption (implies (<= x y) (= max_x_y y))

@ Q: Encode the predicate (even n), that is
true when n is even.

Quantifiers

Quantified formulas in SMT-LIB:

e fmla o=
| (forall bound* fmla)
| (exists bound* fmla)
e Bound :=(idsort-id)

© Q:lwant fto be an injective function. Write an axiom that forces f to be
injective.

e Patterns: guiding the instantiation of quantifiers (Lecture 5)

e fmla o=
| (forall (?x A) (?y B) fmla :pat { term })
| (exists (?x A) (?y B) fmla :pat { term })

© Q:what are the patterns for the injectivity axiom?

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 1 2
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Using the Z3 (managed) API

Create a context z3:

open Microsoft.Z3
open System.Collections.Generic
open System

let par = new Config()

do parSetParamValue("MODEL", "true")

let z3 = new TypeSafeContext(par)

let check (fmla) =
z3.Push();
z3.AssertCnstr(fmla);
(match z3.Check() with
| LBool.False -> Printf.printf "unsat\n"
| LBool.True -> Printf.printf "sat\n"

| _ -> assert false);
z3.Pop(1ul)

| LBool.Undef -> Printf.printf "unknown\n"

Check a formula

-Push
-AssertCnstr
-Check

-Pop

Using the Z3 (managed) API

let(===)xy =z3.MkEq(xy)
let(==>)xy = z3.Mkimplies(xy)
let (&&)xy = z3.MkAnd(xy)
let neg x = z3.MkNot(x)

leta = z3.MkType(“a")

let f_decl = z3.MkFuncDecl("f",a,a)
let x = z3.MkConst("x",a)

letfx =2z3.MkApp(f_declx)

Declaring z3 shortcuts,
constants and functions

Proving a theorem

do check (neg fmlal)

let fmlal = ((x === f(f(f(f(f(f x))))) && (x === f(f(f x)))) ==> (x === (f X))

(benchmark euf
:logic QF_UF
:extrafuns ((f U U) (x U))

compared to

:formula (not (implies (and (= x (f(f(F(F(f)))))) (= x (F(F(F X)) (= x (f X))

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

113

8/19/2008

Enumerating models

We want to find models for

2<i, <5AL<I, STA-1<i, <17 A

O<i+L+L AL+, =1

But we only care about different i,

Enumerating models

© Representing the problem

void Test() {
Config par = new Config();

2 < il S 5 VAN par.SetParamValue("MODEL", "true");
z3 = new TypeSafeContext(par);
1 <L < 7 A intT = z3.MkintType();
2 il = z3.MkConst("il", intT); i2 = z3.MkConst("i2", intT);

H i3 = z3.MkConst("i3", intT);
~1<i, <17 A mmp

z3.AssertCnstr(Num(2) < il & il <= Num(5));

0< i1 + i2 + i3 A 73 AssertCnstr(Num(1) < i2 & i2 <= Num(7));

z3.AssertCnstr(Num(-1) < i3 & i3 <= Num(17));
i + | — | z3.AssertCnstr(Num(0) <= il +i2 + i3 & Eq(i2 + i3, i1));
2 3

Enumerate();

par.Dispose();

z3.Dispose();

}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 14
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Enumerating models

Enumeration:

void Enumerate() {

TypeSafeModel model = null;

while (LBool.True == z3.CheckAndGetModel(ref model)) {
model.Display(Console.Out);
intvl = model.GetNumeralValuelnt(model.Eval(il));
TermAst block = Eq(Num(v1),i1);
Console.WriteLine("Block {0}", block);
z3.AssertCnstr(!block);
model.Dispose();

TermAst Eq(TermAst t1, TermAst t2) { return z3.MkEq(t1,t2); }

TermAst Num(int i) { return z3.MkNumeral(i, intT); }

Push, Pop

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {
int mid = (lo+hi)/2;

Console WriteLine("lo: {0}, hi: {1}, mid: {2}",10,hi,mid);

z3.Push();

z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));

TypeSafeModel model = null;

if (LBool.True == z3.CheckAndGetModel(ref model)) {
lo = model.GetNumeralValuelnt(model.Eval(a));

model.Dispose();
}
else hi = mid;
z3.Pop();
}

return hi;

4:1int
i1)

2:int
3:int
5:int

Block (= 5 i1)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/19/2008

115

8/19/2008

Push, Pop — but reuse search

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {

int mid = (lo+hi)/2;

Console WriteLine("lo: {0}, hi: {1}, mid: {2}",l0,hi,mid);

z3.Push();

z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));

TypeSafeModel model = null;

if (LBool.True == z3.CheckAndGetModel(ref model)) {
lo = model.GetNumeralValuelnt(model.Eval(a));
model.Dispose();
lo = Maximize(a, lo, hi);

else hi = mid;
z3.Pop();
}

return hi;

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 1 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

