Bit-Blasting Meets Local Search in Bitwuzla

Aina Niemetz and Mathias Preiner

Shonan Meeting 180, October 2-5, 2023

Bitwuzla [CAV'23]

A new, specialized SMT Solver

- for the quantified and quantifier-free theories of
 - ▷ fixed-size bit-vectors, floating-point arithmetic, arrays, and uninterpreted functions
 - ▷ Focus: theories primarily used in hardware verification

Selected Features:

- Full incremental support
- Seamless interaction between multiple solver instances
- ▷ Models, unsat cores/assumptions
- ▷ Comprehensive and easy-to-use **APIs** (C++, C, Python, OCamI)
- ▷ Input Formats: SMT-LIBv2, BTOR2

Pronounced as "bitvootslah"

- Derived from an Austrian dialect expression for someone who tinkers with bits.
- Bitwuzla considered superior successor of Boolector

History

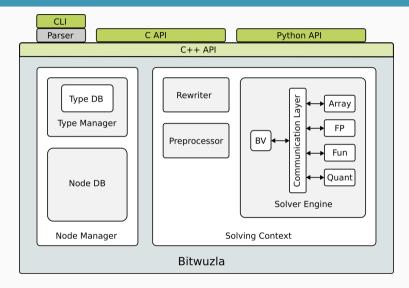
Boolector

- ► An award-winning SMT solver, but ...
 - Specialized, tight integration of bit-vectors with arrays
 - Monolithic C code base, rigid architecture
- Cumbersome to maintain, adding new features difficult

Bitwuzla

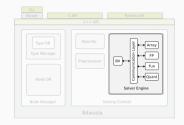
- Started as an improved and extended fork of Boolector in 2018
 - ▷ Floating-point arithmetic, local search procedure, unsat cores, ...
 - $\,\triangleright\,$ No official release, limitations of Boolector remained
- In 2022, code base discarded and rewritten from scratch
- ▶ Written in C++, **inspired** by techniques in Boolector

Architecture



Solver Engine

- Maintains a theory solver for each supported theory
- Quantifiers module implemented as theory solver
- Distributes relevant terms to theory solvers
- ▶ Processes lemmas generated by theory solvers
- Model-based theory combination
- Implements lazy SMT paradigm lemmas on demand
- Bit-vector abstraction of formula (instead of propositional)
 - Bit-vector solver at its core
 - BV solver reasons about Boolean and bit-vector terms
 - ▷ Non-BV theory atoms abstracted as Boolean constant
 - ▷ BV terms with non-BV operator abstracted as **bit-vector constant**



Bit-Vector Solver

Bit-Blast Solver

- ▶ BV terms » AIG circuits (+rewriting [BB'06]) » CNF
- CaDiCaL (default), Kissat (non-incremental)
- ► SAT solver used as a black box (no IPASIR-UP)

Propagation-Based Local Search Solver (sat only)

- ► Ternary propagation-based local search [FMCAD'20]
- extension with bound tightening *R*
- no SAT solver

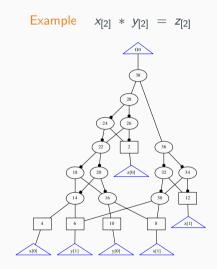
Three Configuration Modes

- Bit-blasting only
- Local search only
- ► Combination of both approaches (challenge: how to share information)

 $(x \ll 001) \ge_s 000 \land x <_u 100 \land (x \cdot 010) \mod 011 = x + 001$ sat: x = 001

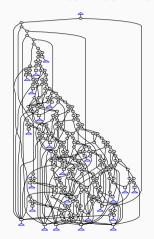
- \circ constants, variables: 010, 2_[3], $x_{[3]}$
- bit-vector operators: $<_u$, $>_s$, \sim , &, ≫, $≫_a$, ◦, [:], +, \cdot , \div , ...
- arithmetic operators modulo 2^n (overflow semantics!)

- current state-of-the-art for quantifier-free bit-vector formulas
- rewriting + simplifications + eager reduction to SAT
- BV terms » AIG circuit » CNF
- ▶ efficient in practice
- may suffer from an exponential blow-up in the formula size
- may not scale well with increasing bit-width



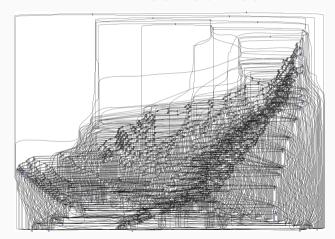
- current state-of-the-art for quantifier-free bit-vector formulas
- rewriting + simplifications + eager reduction to SAT
- BV terms » AIG circuit » CNF
- efficient in practice
- may suffer from an exponential blow-up in the formula size
- may not scale well with increasing bit-width

Example $x_{[8]} * y_{[8]} = z_{[8]}$

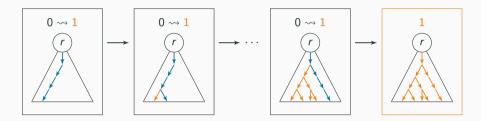


- current state-of-the-art for quantifier-free bit-vector formulas
- rewriting + simplifications + eager reduction to SAT
- BV terms » AIG circuit » CNF
- ▶ efficient in practice
- may suffer from an exponential blow-up in the formula size
- may not scale well with increasing bit-width

Example $x_{[32]} * y_{[32]} = z_{[32]}$

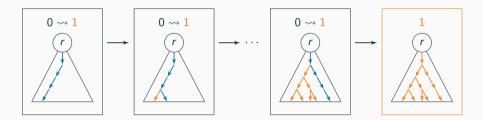


Propagation-Based Local Search [CAV'16]



- without bit-blasting (orthogonal approach)
- ► lifts concept of **backtracing** from ATPG to the **word-level**
- ▶ not able to determine unsatisfiability
- Probabilistically Approximately Complete (PAC) [Hoos, AAAI'99]
 - $\,\triangleright\,$ guaranteed to find a solution if there is one

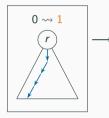
Propagation-Based Local Search [CAV'16]

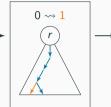


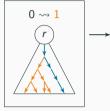
- ▶ assume satisfiability, start with initial assignment
- propagate target values towards inputs
 - ▷ invertibility conditions
 - ▷ inverse value computation
 - ▷ weaker notion : **consistency** condition, **consistent** value computation

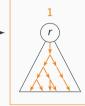
▶ iteratively improve current state until **solution** is found

Propagation-Based Local Search [CAV'16]









Main Weaknesses:

- oblivious to constant bits
 - $\circ~$ propagates target values that can never be assumed
 - $\circ \ \ \text{redundant work}$
- too many possible candidates for value selection
 - $\circ~$ blindly picking a candidate is bad
 - $\circ~$ disrespects bounds implied from top-level constraints

Ternary Propagation-Based Local Search [FMCAD'20]

Non-deterministic algorithm

propagation path and value selection
multiple possible paths and values

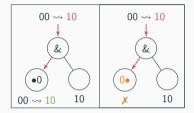
- Down-propagation of values wrt. constant bits
- constant bits are precomputed upfront
- represented as **ternary bit-vectors** $x = \langle x^{lo}, x^{hi} \rangle$

▷ x^{lo} ... minimum (unsigned) value of x ▷ x^{hi} ... maximum (unsigned) value of x

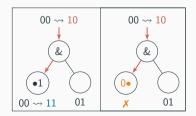
▷ with $(\sim x^{lo} \mid x^{hi}) \approx$ ones (validity condition)

• Example:
$$x_{[4]} = \bullet \bullet \bullet 0 = \langle 0000, 1110 \rangle$$

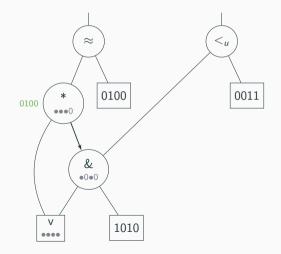
 $x_{[4]} = \bullet \bullet 1 \bullet = \langle 0010, 1111 \rangle$

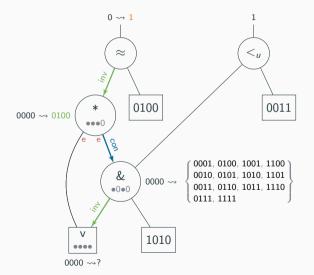


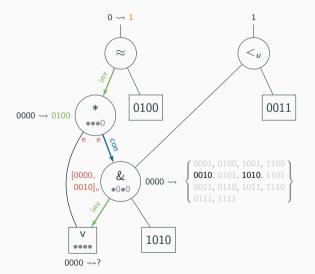
inverse value

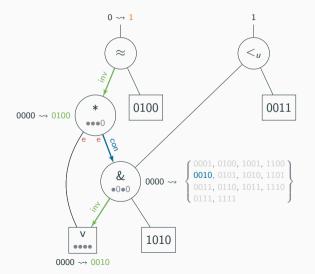


consistent value









Bound Tightening

- too many possible candidates for value selection
 - $\,\triangleright\,$ especially for disequality, inequalities, bit-wise operators
 - ▷ especially for large(r) bit-widths

compute bounds

- $\triangleright \text{ for } x \text{ in } x \diamond s (s \diamond x)$
- ▷ implied by satisfied top-level inequalities $\{<_s, \ge_s, <_u, \ge_u\}$

define invertibility conditions wrt. to min/max bounds

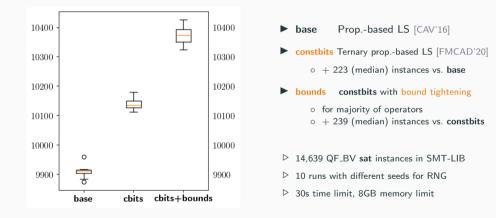
$$\begin{array}{l} \triangleright \quad IC(x, x <_{u} s \approx t) = \\ t \approx 1 \Rightarrow (s \not\approx 0 \qquad \qquad \land x^{lo} <_{u} s) \land t \approx 0 \Rightarrow (x^{hi} \ge_{u} s) \\ \downarrow^{\bigtriangledown} \\ t \approx 1 \Rightarrow (\min_{u}(x) <_{u} s \land x^{lo} <_{u} s) \land t \approx 0 \Rightarrow (x^{hi} \ge_{u} s) \land \max_{u}(x) \ge_{u} s \end{array}$$

▷ affects path selection (essential input condition)

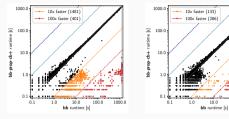
consistency conditions remain unchanged

- IC with respect to current assignment
- CC independent of the current assignment

implemented in our new LS library, integrated in Bitwuzla

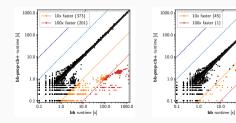


Sequential Portfolio Combination



Lingeling SAT back end

10.0 100.0 1000.0



Kissat SAT back end

CaDiCaL SAT back end

100.0 1000.0

sequential portfolio

(first run LS, then fall back to bit-blasting)

- ▶ all 41,713 benchmarks in SMT-LIB QF_BV
- ▶ 1200s time limit, 8GB memory limit

Local Search Solver » Bit-Blast Solver

- ▶ Utilize assignment of local search solver to give the SAT solver a head start
- ► Which assignment should we use?
 - ▷ Last assignment (before the LS solver gave up)
 - Best assignment (largest number of roots satsified)
- ▶ Which parts of the assignment?
 - ▷ Assignment of **all** inputs
 - Assignment of inputs under sat roots
 - ▷ Assignment of inputs that only appear under sat roots
- ▶ Use API function phase() to set assignment of input bits
- ▶ Problem: seems to "lock in" the phase too much
- We would need an API level "saved phase" (only use the phase as a per literal starting phase, not for every decision)

Bit-Blast Solver » Local Search Solver

- Seed local search solver with last sat assignment of bit-blasting solver
- ► Especially interesting for lemmas on demand
 - ▷ Bit-vector abstraction is iteratively refined until unsat or sat and theory consistent
 - Successful application of sequential portfolio combination on problems where the bit-vector abstraction is already hard
- ► Significantly helps the local search engine
- ▶ Problem: Potentially worse than sequential portfolio in combination with other direction
- ▶ Why is the combination of both directions worse than sequential portfolio?
 - Suspicion: "too many" iterative calls are solved by local search and SAT solver has to "catch up" without the benefit of small incremental calls
 - ▷ We need to be able to seed the bit-blasting solver with the local search assignment without decreasing performance of the SAT solver

Conclusion

Bitwuzla

- A new state-of-the-art SMT solver for all things bits (and more)
- Source code: https://github.com/bitwuzla/bitwuzla
- Website and Documentation: https://bitwuzla.github.io

Ternary Propagation-Based Local Search

- great complementary technique to bit-blasting
 - constant bits information helps avoid redundant work
 - bound tightening extremely promising
 - \circ work in progress
 - $\circ~$ current (limited) support yields significant improvement
- ▶ implemented as local search library
 - $\,\triangleright\,$ allows solver-independent integration
- **Challenge:** Hybrid approach
 - $\triangleright\,$ share information between bit-blasting and local search

References i

- A. Niemetz and M. Preiner. *Bitwuzla*.
- A. Niemetz and M. Preiner. Ternary Propagation-Based Local Search for more Bit-Precise Reasoning.
- M. Brain, A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Invertibility Conditions for Floating-Point Formulas. In Proc. of CAV'19, pages 116–136, Springer, 2019.
- A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Solving Quantified Bit-Vectors Using Invertibility Conditions. In Proc. of CAV'18, pages 236–255, Springer, 2018.
- A. Niemetz, M. Preiner and A. Biere. *Precise and Complete Propagation Based Local Search for Satisfiability Modulo Theories.* In Proc. of CAV'16, pages 199–217, Springer, 2016.

- **R**. Brummayer, A. Biere. *Local Two-Level And-Inverter Graph Minimization without Blowup.* In Proc. of MEMICS'06, 2006.
- H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. In Proc. of AAAI/IAAI'99, pages 661–666, AAAI Press / The MIT Press, 1999.