
Bit-Blasting Meets Local Search in Bitwuzla

Aina Niemetz and Mathias Preiner

Shonan Meeting 180, October 2–5, 2023



Bitwuzla [CAV’23]

A new, specialized SMT Solver

▶ for the quantified and quantifier-free theories of
▷ fixed-size bit-vectors, floating-point arithmetic, arrays, and uninterpreted functions

▷ Focus: theories primarily used in hardware verification

▶ Selected Features:
▷ Full incremental support

▷ Seamless interaction between multiple solver instances

▷ Models, unsat cores/assumptions

▷ Comprehensive and easy-to-use APIs (C++, C, Python, OCaml)

▷ Input Formats: SMT-LIBv2, BTOR2

▶ Pronounced as “bitvootslah”

▶ Derived from an Austrian dialect expression for someone who tinkers with bits.

▶ Bitwuzla considered superior successor of Boolector

1



History

Boolector

▶ An award-winning SMT solver, but . . .

▷ Specialized, tight integration of bit-vectors with arrays

▷ Monolithic C code base, rigid architecture

▶ Cumbersome to maintain, adding new features difficult

Bitwuzla

▶ Started as an improved and extended fork of Boolector in 2018

▷ Floating-point arithmetic, local search procedure, unsat cores, . . .

▷ No official release, limitations of Boolector remained

▶ In 2022, code base discarded and rewritten from scratch

▶ Written in C++, inspired by techniques in Boolector

2



Architecture

3



Solver Engine

▶ Maintains a theory solver for each supported theory

▶ Quantifiers module implemented as theory solver

▶ Distributes relevant terms to theory solvers

▶ Processes lemmas generated by theory solvers

▶ Model-based theory combination

▶ Implements lazy SMT paradigm lemmas on demand

▶ Bit-vector abstraction of formula (instead of propositional)

▷ Bit-vector solver at its core

▷ BV solver reasons about Boolean and bit-vector terms

▷ Non-BV theory atoms abstracted as Boolean constant

▷ BV terms with non-BV operator abstracted as bit-vector constant

4



Bit-Vector Solver

Bit-Blast Solver

▶ BV terms ∠ AIG circuits (+rewriting [BB’06]) ∠ CNF

▶ CaDiCaL (default), Kissat (non-incremental)

▶ SAT solver used as a black box (no IPASIR-UP)

Propagation-Based Local Search Solver (sat only)

▶ Ternary propagation-based local search [FMCAD’20]

▶ extension with bound tightening

▶ no SAT solver

Three Configuration Modes

▶ Bit-blasting only

▶ Local search only

▶ Combination of both approaches (challenge: how to share information)

5



Theory of Fixed-Size Bit-Vectors

(x << 001) ≥s 000 ∧ x <u 100 ∧ (x · 010) mod 011 = x + 001

sat: x = 001

◦ constants, variables: 010, 2[3], x[3]

◦ bit-vector operators: <u, >s , ∼ , &, >>, >>a, ◦, [:], +, ·, ÷, . . .

◦ arithmetic operators modulo 2n (overflow semantics!)

6



Bit-Blasting

▶ current state-of-the-art for

quantifier-free bit-vector formulas

▶ rewriting + simplifications + eager

reduction to SAT

▶ BV terms ∠ AIG circuit ∠ CNF

▶ efficient in practice

▶ may suffer from an exponential blow-up

in the formula size

▶ may not scale well with increasing

bit-width

Example x[2] ∗ y[2] = z[2]

2

z[0]

4

x[0]

6

y[1]

8

x[1]

10

y[0]

12

z[1]

14 16

18 20

22

24 26

28

30

32 34

36

38

O0

7



Bit-Blasting

▶ current state-of-the-art for

quantifier-free bit-vector formulas

▶ rewriting + simplifications + eager

reduction to SAT

▶ BV terms ∠ AIG circuit ∠ CNF

▶ efficient in practice

▶ may suffer from an exponential blow-up

in the formula size

▶ may not scale well with increasing

bit-width

Example x[8] ∗ y[8] = z[8]

2

z[0]

4

x[6]

6

y[7]

8

x[7] 10

y[6]

12

x[5]

14

y[5]

16

x[4]

18

y[4]

20

x[3]

22

y[3]

24

x[2]

26

y[2]

28

x[1]

30

y[1]

32

x[0]

34

y[0]36

z[1]

38

z[2]

40

z[3]

42

z[4]

44

z[5]

46

z[6]

48

z[7]50

52

54

5658

6062

64

6668

70

72

74

76

78

80

8284

86

8890

9294

9698

100

102 104

106

108

110

112

114

116118

120122

124

126128

130

132

134136

138

140142

144146

148150

152

154156

158 160

162

164

166

168

170

172

174176

178

180182

184186

188190

192

194196

198200

202204

206

208210

212214

216218

220

222 224

226228

230

232

234

236

238

240

242

244246

248

250252

254256

258260

262

264266

268270

272274

276

278280

282284

286288

290

292294

296298

300302

304

306308

310312

314

316

318

320

322

324

326328

330332

334

336 338

340

342

344 346

348

350 352

354

356

358 360

362

364 366

368370

372 374

376

378 380

382384

386388

390

392 394

396398

400402

404

406408

410412

414416

418

420 422

424

426

428

430 432

434

436

438

440

442 444

446

448

450

452

454 456

458

460

462

464

466468

470

472

474

476

478480

482

484

486

488

490 492

494

496

498

500502

504

506

O0

7



Bit-Blasting

▶ current state-of-the-art for

quantifier-free bit-vector formulas

▶ rewriting + simplifications + eager

reduction to SAT

▶ BV terms ∠ AIG circuit ∠ CNF

▶ efficient in practice

▶ may suffer from an exponential blow-up

in the formula size

▶ may not scale well with increasing

bit-width

Example x[32] ∗ y[32] = z[32]

7



Propagation-Based Local Search [CAV’16]

r

0⇝ 1

r

0⇝ 1

. . . r

0⇝ 1

r

1

▶ without bit-blasting (orthogonal approach)

▶ lifts concept of backtracing from ATPG to the word-level

▶ not able to determine unsatisfiability

▶ Probabilistically Approximately Complete (PAC) [Hoos, AAAI’99]

▷ guaranteed to find a solution if there is one

8



Propagation-Based Local Search [CAV’16]

r

0⇝ 1

r

0⇝ 1

. . . r

0⇝ 1

r

1

▶ assume satisfiability, start with initial assignment

▶ propagate target values towards inputs
▷ invertibility conditions

▷ inverse value computation

▷ weaker notion : consistency condition, consistent value computation

▶ iteratively improve current state until solution is found
8



Propagation-Based Local Search [CAV’16]

r

0⇝ 1

r

0⇝ 1

. . . r

0⇝ 1

r

1

▶ Main Weaknesses:

▶ oblivious to constant bits

◦ propagates target values that can never be assumed

◦ redundant work

▶ too many possible candidates for value selection

◦ blindly picking a candidate is bad

◦ disrespects bounds implied from top-level constraints
8



Ternary Propagation-Based Local Search [FMCAD’20]

&

00⇝ 10

•0

00⇝ 10 10

inverse value

&

00⇝ 10

0•

✗ 10

&

00⇝ 10

•1

00⇝ 11 01

consistent value

&

00⇝ 10

0•

✗ 01

▶ Non-deterministic algorithm

▷ propagation path and value selection
◦ multiple possible paths and values

▶ Down-propagation of values wrt. constant bits

▶ constant bits are precomputed upfront

▶ represented as ternary bit-vectors x = ⟨x lo , xhi ⟩
▷ x lo . . . minimum (unsigned) value of x

▷ xhi . . . maximum (unsigned) value of x

▷ with (∼x lo | xhi ) ≈ ones (validity condition)

◦ Example: x[4] = •••0 = ⟨0000, 1110⟩
x[4] = ••1• = ⟨0010, 1111⟩

9



Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011

≈

*
•••0

0100

&
•0•0

v
•••• 1010

0000 ⇝ 0100

<u

0011

10



Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011


0001, 0100, 1001, 1100

0010, 0101, 1010, 1101

0011, 0110, 1011, 1110

0111, 1111



0 ⇝ 1

≈

*
•••0

0100

&
•0•0

v
•••• 1010

0000 ⇝ 0100

0000 ⇝

0000 ⇝?

in
v

e con

e

in
v

<u

1

0011

10



Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011


0001, 0100, 1001, 1100

0010, 0101, 1010, 1101

0011, 0110, 1011, 1110

0111, 1111



0 ⇝ 1

≈

*
•••0

0100

&
•0•0

v
•••• 1010

0000 ⇝ 0100

0000 ⇝
[0000,

0010]u

0000 ⇝?

in
v

e con

e

in
v

<u

1

0011

10



Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011


0001, 0100, 1001, 1100

0010, 0101, 1010, 1101

0011, 0110, 1011, 1110

0111, 1111



0 ⇝ 1

≈

*
•••0

0100

&
•0•0

v
•••• 1010

0000 ⇝ 0100

0000 ⇝

0000 ⇝ 0010

in
v

e con

e

in
v

<u

1

0011

10



Bound Tightening

▶ too many possible candidates for value selection
▷ especially for disequality, inequalities, bit-wise operators

▷ especially for large(r) bit-widths

▶ compute bounds
▷ for x in x ⋄ s (s ⋄ x)
▷ implied by satisfied top-level inequalities {<s ,≥s , <u,≥u}

▶ define invertibility conditions wrt. to min/max bounds
▷ IC(x , x <u s ≈ t) =

t ≈ 1 ⇒ (s ̸≈ 0 ∧ x lo <u s) ∧ t ≈ 0 ⇒ (xhi ≥u s)

t ≈ 1 ⇒ (minu(x) <u s∧ x lo <u s) ∧ t ≈ 0 ⇒ (xhi ≥u s) ∧ maxu(x) ≥u s

▷ affects path selection (essential input condition)

▶ consistency conditions remain unchanged
▷ IC with respect to current assignment

▷ CC independent of the current assignment
11



Ternary Propagation-Based Local Search + Bound Tightening

▶ implemented in our new LS library, integrated in Bitwuzla

▶ base Prop.-based LS [CAV’16]

▶ constbits Ternary prop.-based LS [FMCAD’20]

◦ + 223 (median) instances vs. base

▶ bounds constbits with bound tightening

◦ for majority of operators

◦ + 239 (median) instances vs. constbits

▷ 14,639 QF BV sat instances in SMT-LIB

▷ 10 runs with different seeds for RNG

▷ 30s time limit, 8GB memory limit

12



Sequential Portfolio Combination

0.1 1.0 10.0 100.0 1000.0
bb runtime [s]

0.1

1.0

10.0

100.0

1000.0

b
b
-p
ro
p
-c
b
+

ru
nt
im

e
[s
]

10x faster (1481)

100x faster (401)

0.1 1.0 10.0 100.0 1000.0
bb runtime [s]

0.1

1.0

10.0

100.0

1000.0

b
b
-p
ro
p
-c
b
+

ru
nt
im

e
[s
]

10x faster (133)

100x faster (286)

Lingeling SAT back end CryptoMiniSat SAT back end

0.1 1.0 10.0 100.0 1000.0
bb runtime [s]

0.1

1.0

10.0

100.0

1000.0

b
b
-p
ro
p
-c
b
+

ru
nt
im

e
[s
]

10x faster (373)

100x faster (201)

0.1 1.0 10.0 100.0 1000.0
bb runtime [s]

0.1

1.0

10.0

100.0

1000.0
b
b
-p
ro
p
-c
b
+

ru
nt
im

e
[s
]

10x faster (45)

100x faster (1)

Kissat SAT back end CaDiCaL SAT back end

▶ sequential portfolio

(first run LS, then fall back to bit-blasting)

▶ all 41,713 benchmarks in SMT-LIB QF BV

▶ 1200s time limit, 8GB memory limit

13



Challenge: Hybrid Combination

Local Search Solver ∠ Bit-Blast Solver

▶ Utilize assignment of local search solver to give the SAT solver a head start

▶ Which assignment should we use?

▷ Last assignment (before the LS solver gave up)

▷ Best assignment (largest number of roots satsified)

▶ Which parts of the assignment?

▷ Assignment of all inputs

▷ Assignment of inputs under sat roots

▷ Assignment of inputs that only appear under sat roots

▶ Use API function phase() to set assignment of input bits

▶ Problem: seems to ”lock in” the phase too much

▶ We would need an API level ”saved phase” (only use the phase as a per literal starting

phase, not for every decision)

14



Challenge: Hybrid Combination

Bit-Blast Solver ∠ Local Search Solver

▶ Seed local search solver with last sat assignment of bit-blasting solver

▶ Especially interesting for lemmas on demand

▷ Bit-vector abstraction is iteratively refined until unsat or sat and theory consistent

▷ Successful application of sequential portfolio combination on problems where the

bit-vector abstraction is already hard

▶ Significantly helps the local search engine

▶ Problem: Potentially worse than sequential portfolio in combination with other direction

▶ Why is the combination of both directions worse than sequential portfolio?

▷ Suspicion: ”too many” iterative calls are solved by local search and SAT solver has to

”catch up” without the benefit of small incremental calls

▷ We need to be able to seed the bit-blasting solver with the local search assignment

without decreasing performance of the SAT solver

15



Conclusion

Bitwuzla

▶ A new state-of-the-art SMT solver for all things bits (and more)

▶ Source code: https://github.com/bitwuzla/bitwuzla

▶ Website and Documentation: https://bitwuzla.github.io

Ternary Propagation-Based Local Search

▶ great complementary technique to bit-blasting
▷ constant bits information helps avoid redundant work
▷ bound tightening extremely promising

◦ work in progress

◦ current (limited) support yields significant improvement

▶ implemented as local search library
▷ allows solver-independent integration

▶ Challenge: Hybrid approach
▷ share information between bit-blasting and local search

16

https://github.com/bitwuzla/bitwuzla
https://bitwuzla.github.io


References i

A. Niemetz and M. Preiner. Bitwuzla.

A. Niemetz and M. Preiner. Ternary Propagation-Based Local Search for more Bit-Precise

Reasoning.

M. Brain, A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Invertibility

Conditions for Floating-Point Formulas. In Proc. of CAV’19, pages 116–136, Springer,

2019.

A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Solving Quantified

Bit-Vectors Using Invertibility Conditions. In Proc. of CAV’18, pages 236–255, Springer,

2018.

A. Niemetz, M. Preiner and A. Biere. Precise and Complete Propagation Based Local

Search for Satisfiability Modulo Theories. In Proc. of CAV’16, pages 199–217, Springer,

2016.

17



References ii

R. Brummayer, A. Biere. Local Two-Level And-Inverter Graph Minimization without

Blowup. In Proc. of MEMICS’06, 2006.

H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT.

In Proc. of AAAI/IAAI’99, pages 661–666, AAAI Press / The MIT Press, 1999.

18


