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Bitwuzla [CAV’23]

A new, specialized SMT Solver

▶ for the quantified and quantifier-free theories of
▷ fixed-size bit-vectors, floating-point arithmetic, arrays, and uninterpreted functions

▷ Focus: theories primarily used in hardware verification

▶ Selected Features:
▷ Full incremental support

▷ Seamless interaction between multiple solver instances

▷ Models, unsat cores/assumptions

▷ Comprehensive and easy-to-use APIs (C++, C, Python, OCaml)

▷ Input Formats: SMT-LIBv2, BTOR2

▶ Pronounced as “bitvootslah”

▶ Derived from an Austrian dialect expression for someone who tinkers with bits.

▶ Bitwuzla considered superior successor of Boolector
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History

Boolector

▶ An award-winning SMT solver, but . . .

▷ Specialized, tight integration of bit-vectors with arrays

▷ Monolithic C code base, rigid architecture

▶ Cumbersome to maintain, adding new features difficult

Bitwuzla

▶ Started as an improved and extended fork of Boolector in 2018

▷ Floating-point arithmetic, local search procedure, unsat cores, . . .

▷ No official release, limitations of Boolector remained

▶ In 2022, code base discarded and rewritten from scratch

▶ Written in C++, inspired by techniques in Boolector
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Architecture
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Solver Engine

▶ Maintains a theory solver for each supported theory

▶ Quantifiers module implemented as theory solver

▶ Distributes relevant terms to theory solvers

▶ Processes lemmas generated by theory solvers

▶ Model-based theory combination

▶ Implements lazy SMT paradigm lemmas on demand

▶ Bit-vector abstraction of formula (instead of propositional)

▷ Bit-vector solver at its core

▷ BV solver reasons about Boolean and bit-vector terms

▷ Non-BV theory atoms abstracted as Boolean constant

▷ BV terms with non-BV operator abstracted as bit-vector constant
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Bit-Vector Solver

Bit-Blast Solver

▶ BV terms ∠ AIG circuits (+rewriting [BB’06]) ∠ CNF

▶ CaDiCaL (default), Kissat (non-incremental)

▶ SAT solver used as a black box (no IPASIR-UP)

Propagation-Based Local Search Solver (sat only)

▶ Ternary propagation-based local search [FMCAD’20]

▶ extension with bound tightening

▶ no SAT solver

Three Configuration Modes

▶ Bit-blasting only

▶ Local search only

▶ Combination of both approaches (challenge: how to share information)
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Theory of Fixed-Size Bit-Vectors

(x << 001) ≥s 000 ∧ x <u 100 ∧ (x · 010) mod 011 = x + 001

sat: x = 001

◦ constants, variables: 010, 2[3], x[3]

◦ bit-vector operators: <u, >s , ∼ , &, >>, >>a, ◦, [:], +, ·, ÷, . . .

◦ arithmetic operators modulo 2n (overflow semantics!)
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Bit-Blasting

▶ current state-of-the-art for

quantifier-free bit-vector formulas

▶ rewriting + simplifications + eager

reduction to SAT

▶ BV terms ∠ AIG circuit ∠ CNF

▶ efficient in practice

▶ may suffer from an exponential blow-up

in the formula size

▶ may not scale well with increasing

bit-width

Example x[2] ∗ y[2] = z[2]
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Bit-Blasting

▶ current state-of-the-art for

quantifier-free bit-vector formulas

▶ rewriting + simplifications + eager

reduction to SAT

▶ BV terms ∠ AIG circuit ∠ CNF

▶ efficient in practice

▶ may suffer from an exponential blow-up

in the formula size

▶ may not scale well with increasing

bit-width

Example x[32] ∗ y[32] = z[32]
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Propagation-Based Local Search [CAV’16]
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1

▶ without bit-blasting (orthogonal approach)

▶ lifts concept of backtracing from ATPG to the word-level

▶ not able to determine unsatisfiability

▶ Probabilistically Approximately Complete (PAC) [Hoos, AAAI’99]

▷ guaranteed to find a solution if there is one
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Propagation-Based Local Search [CAV’16]
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▶ assume satisfiability, start with initial assignment

▶ propagate target values towards inputs
▷ invertibility conditions

▷ inverse value computation

▷ weaker notion : consistency condition, consistent value computation

▶ iteratively improve current state until solution is found
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Propagation-Based Local Search [CAV’16]
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▶ Main Weaknesses:

▶ oblivious to constant bits

◦ propagates target values that can never be assumed

◦ redundant work

▶ too many possible candidates for value selection

◦ blindly picking a candidate is bad

◦ disrespects bounds implied from top-level constraints
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Ternary Propagation-Based Local Search [FMCAD’20]
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▶ Non-deterministic algorithm

▷ propagation path and value selection
◦ multiple possible paths and values

▶ Down-propagation of values wrt. constant bits

▶ constant bits are precomputed upfront

▶ represented as ternary bit-vectors x = ⟨x lo , xhi ⟩
▷ x lo . . . minimum (unsigned) value of x

▷ xhi . . . maximum (unsigned) value of x

▷ with (∼x lo | xhi ) ≈ ones (validity condition)

◦ Example: x[4] = •••0 = ⟨0000, 1110⟩
x[4] = ••1• = ⟨0010, 1111⟩
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Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011
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Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011
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Ternary Propagation-Based Local Search + Bound Tightening

Example. v[4] · (v[4] & 1010) ≈ 0100 ∧ (v[4] & 1010) <u 0011
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Bound Tightening

▶ too many possible candidates for value selection
▷ especially for disequality, inequalities, bit-wise operators

▷ especially for large(r) bit-widths

▶ compute bounds
▷ for x in x ⋄ s (s ⋄ x)
▷ implied by satisfied top-level inequalities {<s ,≥s , <u,≥u}

▶ define invertibility conditions wrt. to min/max bounds
▷ IC(x , x <u s ≈ t) =

t ≈ 1 ⇒ (s ̸≈ 0 ∧ x lo <u s) ∧ t ≈ 0 ⇒ (xhi ≥u s)

t ≈ 1 ⇒ (minu(x) <u s∧ x lo <u s) ∧ t ≈ 0 ⇒ (xhi ≥u s) ∧ maxu(x) ≥u s

▷ affects path selection (essential input condition)

▶ consistency conditions remain unchanged
▷ IC with respect to current assignment

▷ CC independent of the current assignment
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Ternary Propagation-Based Local Search + Bound Tightening

▶ implemented in our new LS library, integrated in Bitwuzla

▶ base Prop.-based LS [CAV’16]

▶ constbits Ternary prop.-based LS [FMCAD’20]

◦ + 223 (median) instances vs. base

▶ bounds constbits with bound tightening

◦ for majority of operators

◦ + 239 (median) instances vs. constbits

▷ 14,639 QF BV sat instances in SMT-LIB

▷ 10 runs with different seeds for RNG

▷ 30s time limit, 8GB memory limit
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Sequential Portfolio Combination
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▶ sequential portfolio

(first run LS, then fall back to bit-blasting)

▶ all 41,713 benchmarks in SMT-LIB QF BV

▶ 1200s time limit, 8GB memory limit
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Challenge: Hybrid Combination

Local Search Solver ∠ Bit-Blast Solver

▶ Utilize assignment of local search solver to give the SAT solver a head start

▶ Which assignment should we use?

▷ Last assignment (before the LS solver gave up)

▷ Best assignment (largest number of roots satsified)

▶ Which parts of the assignment?

▷ Assignment of all inputs

▷ Assignment of inputs under sat roots

▷ Assignment of inputs that only appear under sat roots

▶ Use API function phase() to set assignment of input bits

▶ Problem: seems to ”lock in” the phase too much

▶ We would need an API level ”saved phase” (only use the phase as a per literal starting

phase, not for every decision)
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Challenge: Hybrid Combination

Bit-Blast Solver ∠ Local Search Solver

▶ Seed local search solver with last sat assignment of bit-blasting solver

▶ Especially interesting for lemmas on demand

▷ Bit-vector abstraction is iteratively refined until unsat or sat and theory consistent

▷ Successful application of sequential portfolio combination on problems where the

bit-vector abstraction is already hard

▶ Significantly helps the local search engine

▶ Problem: Potentially worse than sequential portfolio in combination with other direction

▶ Why is the combination of both directions worse than sequential portfolio?

▷ Suspicion: ”too many” iterative calls are solved by local search and SAT solver has to

”catch up” without the benefit of small incremental calls

▷ We need to be able to seed the bit-blasting solver with the local search assignment

without decreasing performance of the SAT solver
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Conclusion

Bitwuzla

▶ A new state-of-the-art SMT solver for all things bits (and more)

▶ Source code: https://github.com/bitwuzla/bitwuzla

▶ Website and Documentation: https://bitwuzla.github.io

Ternary Propagation-Based Local Search

▶ great complementary technique to bit-blasting
▷ constant bits information helps avoid redundant work
▷ bound tightening extremely promising

◦ work in progress

◦ current (limited) support yields significant improvement

▶ implemented as local search library
▷ allows solver-independent integration

▶ Challenge: Hybrid approach
▷ share information between bit-blasting and local search
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