Bit-Blasting Meets Local Search in Bitwuzla

Aina Niemetz and Mathias Preiner

Shonan Meeting 180, October 2-5, 2023

Stanford ® canwR

University Stanford |center o Automated Ressoring




Bitwuzla [CAV’23]

A new, specialized SMT Solver

» for the quantified and quantifier-free theories of
> fixed-size bit-vectors, floating-point arithmetic, arrays, and uninterpreted functions
> Focus: theories primarily used in hardware verification

» Selected Features:
> Full incremental support
> Seamless interaction between multiple solver instances
> Models, unsat cores/assumptions
> Comprehensive and easy-to-use APIs (C++, C, Python, OCaml)
> Input Formats: SMT-LIBv2, BTOR2
» Pronounced as “bitvootslah”
» Derived from an Austrian dialect expression for someone who tinkers with bits.

» Bitwuzla considered superior successor of Boolector



Boolector

» An award-winning SMT solver, but ...

> Specialized, tight integration of bit-vectors with arrays
> Monolithic C code base, rigid architecture

» Cumbersome to maintain, adding new features difficult

Bitwuzla

» Started as an improved and extended fork of Boolector in 2018

> Floating-point arithmetic, local search procedure, unsat cores, ...
> No official release, limitations of Boolector remained

» In 2022, code base discarded and rewritten from scratch

» Written in C4++, inspired by techniques in Boolector



Architecture

Node Manager

CLI
parser | | C API ) | Python API
C++ API
Type DB Rewriter ?
E, rray
Type Manager 5 -
o FP
Y =1
Preprocessor S
) =
5 Fun
£
Node DB 8
Solver Engine
- ~

Solving Context

Bitwuzla




Solver Engine

Maintains a theory solver for each supported theory
Quantifiers module implemented as theory solver

Distributes relevant terms to theory solvers

k)
]
H
H
S

Processes lemmas generated by theory solvers soerénane

vV vy VvV Vy

Model-based theory combination

v

Implements lazy SMT paradigm lemmas on demand

» Bit-vector abstraction of formula (instead of propositional)
> Bit-vector solver at its core
> BV solver reasons about Boolean and bit-vector terms
> Non-BV theory atoms abstracted as Boolean constant
> BV terms with non-BV operator abstracted as bit-vector constant



Bit-Vector Solver

Bit-Blast Solver

» BV terms » AIG circuits (+rewriting [BB'06]) » CNF
» CaDiCalL (default), Kissat (non-incremental)
» SAT solver used as a black box (no IPASIR-UP)

Propagation-Based Local Search Solver (sat only)

» Ternary propagation-based local search [FMCAD'20]
> extension with bound tightening f_
» no SAT solver

Three Configuration Modes

» Bit-blasting only
» Local search only
» Combination of both approaches (challenge: how to share information) §_



Theory of Fixed-Size Bit-Vectors

(x << 001) >. 000 A x <, 100 A (x - 010) mod 011 = x -+ 001

sat: x = 001

o constants, variables: 010, 2[3], X[3]
o bit-vector operators: <,, >s, ~, &, >>, >>,, 0, [], +, -, =, ...

o arithmetic operators modulo 2" (overflow semantics!)



Bit-Blasting

Example  xp * ypo = 7

» current state-of-the-art for
quantifier-free bit-vector formulas

» rewriting + simplifications + eager
reduction to SAT

» BV terms » AIG circuit » CNF

» efficient in practice

» may suffer from an exponential blow-up
in the formula size

» may not scale well with increasing
bit-width




Bit-Blasting

Example  xg * yg = Zg
> current state-of-the-art for
quantifier-free bit-vector formulas

» rewriting + simplifications + eager
reduction to SAT

» BV terms » AIG circuit » CNF

» efficient in practice

» may suffer from an exponential blow-up
in the formula size

» may not scale well with increasing
bit-width




Bit-Blasting

» current state-of-the-art for
quantifier-free bit-vector formulas

» rewriting + simplifications + eager
reduction to SAT

» BV terms » AIG circuit » CNF

» efficient in practice

may suffer from an exponential blow-up
in the formula size

» may not scale well with increasing
bit-width

Example X321 * yi32) = Zj32




Propagation-Based Local Search [CAV’16]

0~ 1 0~ 1 0~1

1

» without bit-blasting (orthogonal approach)

» lifts concept of backtracing from ATPG to the word-level

» not able to determine unsatisfiability

» Probabilistically Approximately Complete (PAC) [Hoos, AAAI'99]
> guaranteed to find a solution if there is one



Propagation-Based Local Search [CAV’16]

0~ 1 0~ 1 0~ 1 1

» assume satisfiability, start with initial assignment

» propagate target values towards inputs
> invertibility conditions
> inverse value computation
> weaker notion : consistency condition, consistent value computation

» iteratively improve current state until solution is found



Propagation-Based Local Search [CAV’16]

0~ 1 0~ 1 0~ 1 1

» Main Weaknesses:

» oblivious to constant bits \/
o propagates target values that can never be assumed
o redundant work

» too many possible candidates for value selection
(J
o blindly picking a candidate is bad &‘
o disrespects bounds implied from top-level constraints



Ternary Propagation-Based Local Search [FM

» Non-deterministic algorithm

3 { |
> propagation path and value selection e @

o multiple possible paths and values . .

00~ 10 10 X 10

» Down-propagation of values wrt. constant bits .
inverse value

» constant bits are precomputed upfront
) o 00 ~ 10 00 ~ 10
> represented as ternary bit-vectors x = (x’°, x")

> x/ .. minimum (unsigned) value of x e e

> xM ... maximum (unsigned) value of x
> with (~x" | x"') &~ ones (validity condition) o . .
o Example: x5 = eee0 = (0000,1110) 00~ 11 01 X 01

] = 0010 = (B0, consistent value 3



Ternary Propagation-Based Local Search + Bound Tightening

Example. vy - (Vi & 1010) & 0100 A (vjg & 1010) <, 0011

10



Ternary Propagation-Based Local Search + Bound Tightening

Example. vy - (Vi & 1010) & 0100 A (vjg & 1010) <, 0011

0~ 1 1

0011

0000 ~+ 0100

0011, 0110, 1011, 1110

0001, 0100, 1001, 1100

0010, 0101, 1010, 1101

0000 ~
0111, 1111

veoe 1010

0000 ~~7 10




Ternary Propagation-Based Local Search + Bound Tightening

Example. vy - (Vi & 1010) & 0100 A (vjg & 1010) <, 0011

0~ 1 1

0000 ~+ 0100

0000 ~~7

10



Ternary Propagation-Based Local Search + Bound Tightening

Example. vy - (Vi & 1010) & 0100 A (vjg & 1010) <, 0011

0~ 1 1

0000 ~+ 0100

0000 ~~ 0010

10



Bound Tightening

» too many possible candidates for value selection
> especially for disequality, inequalities, bit-wise operators
> especially for large(r) bit-widths

» compute bounds
> for x in xos (50 x)
> implied by satisfied top-level inequalities {<s, >, <u, >u}

» define invertibility conditions wrt. to min/max bounds
> IC(x,x <y s~ t)=
tal= (s#0 AXP < )Nt~ 0= (XM >, )
< .
Rl = (ming(x) <usAXP <, s)Atx=0 = (X" >, 8) A maxy(x) >u s

> affects path selection (essential input condition)

» consistency conditions remain unchanged

> |C with respect to current assignment

> CC independent of the current assignment
11



Ternary Propagation-Based Local Search + Bound Tightening

» implemented in our new LS library, integrated in Bitwuzla

10400 %
10300 A

10200 A é

10100 A

10000 A

o
9900 f
ba‘se cblits chits+imunds

10400

10300

10200

10100

10000

9900

» base Prop.-based LS [CAV'16]

P constbits Ternary prop.-based LS [FMCAD'20]

o + 223 (median) instances vs. base

bounds  constbits with bound tightening

o for majority of operators
o + 239 (median) instances vs. constbits

> 14,639 QF_BV sat instances in SMT-LIB
D> 10 runs with different seeds for RNG

30s time limit, 8GB memory limit

12



Sequential Portfolio Combination

bb-prop-ch+ runtime [5]

bb-prop-cb-+ runtime [5]

100004 10y faster (1481)

—— 100x faster (401)

8
s

s

3

100
bb runtime [§]

Lingeling SAT back end

100009 10 faster (373)

—— 100x faster (201

01 10 100 1000 10000
bb runtime [5]

Kissat SAT back end

1000.0{

—— 10x faster (133)
—— 100x faster (286)

100.0

bb-prop-cb+ runtime [§]

01 10 100 1000 10000
bb runtime [§]

CryptoMiniSat SAT back end

—— 100x faster (1)

100.0

bb-prop-cb-+ runtime [5]

100 1000 10000
bb runtime [5]

CaDiCalL SAT back end

sequential portfolio

(first run LS, then fall back to bit-blasting)

all 41,713 benchmarks in SMT-LIB QF_BV

1200s time limit, 8GB memory limit

13



Challenge: Hybrid Combination

Local Search Solver » Bit-Blast Solver

» Utilize assignment of local search solver to give the SAT solver a head start
» Which assignment should we use?

> Last assignment (before the LS solver gave up)
> Best assignment (largest number of roots satsified)

» Which parts of the assignment?

> Assignment of all inputs
> Assignment of inputs under sat roots
> Assignment of inputs that only appear under sat roots

» Use API function phase () to set assignment of input bits
» Problem: seems to "lock in” the phase too much
» We would need an API level "saved phase” (only use the phase as a per literal starting

phase, not for every decision)

14



Bit-Blast Solver » Local Search Solver

» Seed local search solver with last sat assignment of bit-blasting solver
» Especially interesting for lemmas on demand

> Bit-vector abstraction is iteratively refined until unsat or sat and theory consistent
> Successful application of sequential portfolio combination on problems where the
bit-vector abstraction is already hard

» Significantly helps the local search engine
» Problem: Potentially worse than sequential portfolio in combination with other direction

» Why is the combination of both directions worse than sequential portfolio?

> Suspicion: "too many” iterative calls are solved by local search and SAT solver has to
"catch up” without the benefit of small incremental calls

> We need to be able to seed the bit-blasting solver with the local search assignment
without decreasing performance of the SAT solver

15



Conclusion

Bitwuzla

> A new state-of-the-art SMT solver for all things bits (and more)
» Source code: https://github.com/bitwuzla/bitwuzla
» Website and Documentation: https://bitwuzla.github.io

Ternary Propagation-Based Local Search

> great complementary technique to bit-blasting

> constant bits information helps avoid redundant work
> bound tightening extremely promising
o work in progress
o current (limited) support yields significant improvement

» implemented as local search library
> allows solver-independent integration
» Challenge: Hybrid approach
> share information between bit-blasting and local search

16


https://github.com/bitwuzla/bitwuzla
https://bitwuzla.github.io

References i

A. Niemetz and M. Preiner. Bitwuzla.

A. Niemetz and M. Preiner. Ternary Propagation-Based Local Search for more Bit-Precise
Reasoning.

M. Brain, A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Invertibility
Conditions for Floating-Point Formulas. In Proc. of CAV'19, pages 116-136, Springer,
20109.

A. Niemetz, M. Preiner, A. Reynolds, C. Barrett and C. Tinelli. Solving Quantified
Bit-Vectors Using Invertibility Conditions. In Proc. of CAV'18, pages 236-255, Springer,
2018.

A. Niemetz, M. Preiner and A. Biere. Precise and Complete Propagation Based Local
Search for Satisfiability Modulo Theories. In Proc. of CAV'16, pages 199-217, Springer,
2016.

17



References ii

R. Brummayer, A. Biere. Local Two-Level And-Inverter Graph Minimization without
Blowup. In Proc. of MEMICS'06, 2006.

H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT.
In Proc. of AAAI/IAAI'99, pages 661-666, AAAI Press / The MIT Press, 1999.

18



