
October 3, 2023
Shonan Village Center, Japan

IPASIR-UP: User Propagators for CDCL

Based on joint work with:
Aina Niemetz, Mathias Preiner, Markus Kirchweger,

Stefan Szeider, Armin Biere

Katalin Fazekas
TU Wien, Vienna, Austria

Outline

IPASIR-UP: User Propagators for CDCL

Inprocessing SAT Solvers

Open Problems with Proofs & Solutions

Outline

IPASIR-UP: User Propagators for CDCL

Inprocessing SAT Solvers

Open Problems with Proofs & Solutions

Usual Use of SAT Solvers

Problem

Propositional
Formula

SAT
Solver

Solution or Proof

Actual Answer

Encode

M |= φ?

Decode

SAT-based Tool

+ Efficient Tools & Verifiable results

But . . .

■ Complete encoding can be extremely large (or impossible)
■ Not everything is relevant to find a refutation
■ Not everything is best solved as SAT

1/22

Usual Use of SAT Solvers

System and its
requirements

Propositional
Formula

SAT
Solver

Solution

A bug in
the system

Encode M |= φ? Decode

SAT-based Tool

+ Efficient Tools & Verifiable results

But . . .

■ Complete encoding can be extremely large (or impossible)
■ Not everything is relevant to find a refutation
■ Not everything is best solved as SAT

1/22

Usual Use of SAT Solvers

Propositional
Formula

SAT
Solver

Proof

R(4, 4) = 18

Encode

M |= φ?

Decode

SAT-based Tool

+ Efficient Tools & Verifiable results

But . . .

■ Complete encoding can be extremely large (or impossible)
■ Not everything is relevant to find a refutation
■ Not everything is best solved as SAT

1/22

Usual Use of SAT Solvers

Problem

Propositional
Formula

SAT
Solver

Solution or Proof

Actual Answer

Encode

M |= φ?

Decode

SAT-based Tool

+ Efficient Tools & Verifiable results

But . . .

■ Complete encoding can be extremely large (or impossible)
■ Not everything is relevant to find a refutation
■ Not everything is best solved as SAT

1/22

Verifiable Results – Proofs & Solutions of SAT Solvers

SAT
Solver

SAT

{a = ⊤, b = ⊥, c = ⊥}

SAT
Solver

UNSAT

. . .

⊥

■ Solution ∼ Trail of the solver when all variables are assigned

■ Proof ∼ Record of all added (and deleted) clauses

■ Both are built while the solver decides satisfiability

2/22

Usual Use of SAT Solvers

Problem

Propositional
Formula

SAT
Solver

Solution or Proof

Actual Answer

Encode

M |= φ?

Decode

SAT-based Tool

+ Efficient Tools & Verifiable results

But . . .

■ Complete encoding can be extremely large (or impossible)
■ Not everything is relevant to find a refutation
■ Not everything is best solved as SAT

3/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

Inremental SAT Solver

SAT-based Tool

Input problem

Partially
encode

a e c Solution
Checker

a c e

Refine encodingAdd

Assume

Final output

Accept

4/22

Usual Use of Incremental SAT Solvers

■ Bounded Model Checking, Planning, MaxSAT, lazy SMT, . . .

■ Reuse exact same solver instance

+ Smaller initial encoding
+ Can reuse previous reasoning steps instead of repeating them

□ Keep learned clauses
□ Keep gathered information (e.g. phases, scores)
□ Keep applied formula simplifications

+ Assumptions provide some influence over the search

+ IPASIR interface makes SAT Solvers interchangeable

5/22

IPASIR – Interface of Incremental SAT Solving
■ Standardized interface, used also at annual competition [BalyoBiereIserSinz-JAI’16]

■ IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”
■ Supports interactions between solve calls

6/22

Usual Use of User Propagators
■ Incremental SAT is not always enough: CDCL(CAS), Combinatorial problems,

SMT, maxSAT, . . .
− Interaction is possible only once the solving is finished

Problem

Propositional
Formula

Incremental
SAT Solver

Solution /
Refutation

Answer

Partially
Encode

Decode

Inspect &
Influence

■ Requires workarounds and modifications in the SAT solver
− Non-replaceable SAT solver → missed advancements
− New application needs new modifications
− Error prone, potential drop in performance

7/22

IPASIR-UP: Standardize Propagator Interface for CDCL

■ Support interactions during the solve () calls

8/22

IPASIR-UP: IPASIR with User Propagators

■ Inspect search
□ Notify all changes to the trail

■ Influence search
1. Add propagations (without

adding reason clauses)
2. Dictate decisions & phases
3. Add new clauses (anytime!)
4. Overrule found solutions
5. Explain relevant propagations

Solving

BCP Learning

Decide

UNSAT

Conflict
Analysis

Solution
Analysis

SAT

backtracking

cb_propagate

phase (lit)
cb_decide

cb_add_external

cb_check_found_model

cb_add_reason

9/22

Example C++ implementation

10/22

Related Work

■ clingo [GebserKaminskiKaufmannOstrowskiSchaubWanko’16]

□ A state-of-the-art ASP solver
□ Supports theory propagators

■ Interactive SAT
□ Programmatic SAT: Lynx [GaneshO’DonnellSoosDevadasRinardSolar-Lezama’12]

□ IntelSAT [Nadel’22]

■ CP solvers [GentMiguelMoore’10]

□ Lazy explanation, lazy clause generation

■ SAT and Theory solvers of SMT solvers [NieuwenhuisOliverasTinelli’06]

□ SAT worker interface [CimattiGriggioSchaafsmaSebastiani’13]

□ User propagators of z3 [BjørnerEisenhoferKovács’22]

11/22

IPASIR-UP Experiments

■ Extended CaDiCaL with IPASIR-UP
□ A state-of-the-art incremental, inprocessing, proof producing SAT solver
□ ∼800 lines of additional code (plus another ∼700 for testing)

■ Evaluated on two representative use cases
□ Combinatorial problem solving: SAT modulo Symmetries (SMS)

• See talk of Stefan Szeider

□ Satisfiability modulo Theories: cvc5
• See talk of Mathias Preiner

■ Generic interface to inspect and influence CDCL search
□ Simple & Flexible → relatively easy to implement
□ Sufficient to simplify several use cases

12/22

IPASIR-UP Experiments

■ Extended CaDiCaL with IPASIR-UP
□ A state-of-the-art incremental, inprocessing, proof producing SAT solver
□ ∼800 lines of additional code (plus another ∼700 for testing)

■ Evaluated on two representative use cases
□ Combinatorial problem solving: SAT modulo Symmetries (SMS)

• See talk of Stefan Szeider

□ Satisfiability modulo Theories: cvc5
• See talk of Mathias Preiner

■ Generic interface to inspect and influence CDCL search
□ Simple & Flexible → relatively easy to implement
□ Sufficient to simplify several use cases

12/22

IPASIR-UP Experiments

■ Extended CaDiCaL with IPASIR-UP
□ A state-of-the-art incremental, inprocessing, proof producing SAT solver
□ ∼800 lines of additional code (plus another ∼700 for testing)

■ Evaluated on two representative use cases
□ Combinatorial problem solving: SAT modulo Symmetries (SMS)

• See talk of Stefan Szeider

□ Satisfiability modulo Theories: cvc5
• See talk of Mathias Preiner

■ Generic interface to inspect and influence CDCL search
□ Simple & Flexible → relatively easy to implement
□ Sufficient to simplify several use cases

12/22

Outline

IPASIR-UP: User Propagators for CDCL

Inprocessing SAT Solvers

Open Problems with Proofs & Solutions

Inprocessing SAT Solvers [JärvisaloHeuleBiere-IJCAR’12]

Irredundant clauses: Redundant clauses:

Reconstruction stack:
⟨ ⟩

SAT Solver

d

d

d

. . .

SAT or UNSAT
answer

13/22

Inprocessing Rules [JärvisaloHeuleBiere-IJCAR’12]

■ Satisfiability preserving clause addition or removal

■ Inprocessing as sequence of abstract states: 𝝋 [𝝆] 𝝈

𝝋: Irredundant clauses 𝝆: Redundant clauses 𝝈: Reconstruction stack

𝜑 [𝜌] 𝜎
𝜑 [𝜌 ∧ 𝐶] 𝜎 ♯

𝜑 [𝜌 ∧ 𝐶] 𝜎
𝜑 [𝜌] 𝜎

𝜑 [𝜌 ∧ 𝐶] 𝜎
𝜑 ∧ 𝐶 [𝜌] 𝜎

𝜑 ∧ 𝐶 [𝜌] 𝜎
𝜑 [𝜌 ∧ 𝐶] 𝜎 · (𝑙 : 𝐶) ♭

LEARN FORGET STRENGTHEN WEAKEN

where ♯ is 𝜑 ∧ 𝜌 ≡𝑠𝑎𝑡 𝜑 ∧ 𝜌 ∧ 𝐶 and ♭ is 𝜑 ∧ 𝐶 ≡ℓ
𝑠𝑎𝑡 𝜑

Formulas 𝜑 and 𝜑∧𝜌 are both satisfiability equivalent to the original input formula.

14/22

Solution Reconstruction [JärvisaloHeuleBiere-IJCAR’12]

(a ∨ b)

Irredundant clauses:
(a ∨ b)

Redundant clauses:

SAT Solver

Reconstruction stack:
a : (a ∨ b)

a ba b

d a b

a b

■ Inprocessing is satisfiability but not model preserving
■ Solution reconstruction is needed to get model of original formula 15/22

Outline

IPASIR-UP: User Propagators for CDCL

Inprocessing SAT Solvers

Open Problems with Proofs & Solutions

Problem 1: IPASIR-UP & Solution Reconstruction

Irredundant clauses: Redundant clauses:

Reconstruction stack:
⟨ ⟩

Trail:

Inprocessing SAT Solver

vs.
Theory Axioms

Theory Solver

vs.

IPASIR-UP

Solution
Reconstruction

cb check model()

■ Theory solver works to always keep the trail of SAT solver theory consistent
■ In the final solution some values are flipped → theory consistency is unknown
■ Non-incremental theory queries

16/22

Problem 1 – Solution Ideas

1. Forbid inprocessing of theory literals (freezing)
+ Very simple implementation (current solution)
− Only very limited inprocessing is allowed

2. Forbid notifying assignments of witness literals
+ No flipped assignments in solution reconstruction
− Many theory literals gets assigned only in the complete model → lazy

3. Apply solution reconstruction on the partial solution
− Not correct (in theory) [FleuryLammich-CADE’23]

− Does not guarantee that last solution reconstruction will not flip values

4. Allow only "theory-consistent" elimination steps
□ Theory aware inprocessing → SMT inprocessing [BjørnerFazekas-CADE’23]

+ Solution reconstruction maintains theory consistency
− How to do that?

17/22

Problem 2: Incremental Queries & Their Proofs

a

a

a

a

SAT
Solver

d

d

d

d

d

⊥

UNSAT 18/22

Problem 2: Solution Ideas (Format)

■ Define incremental DIMACS
□ Standardize iCNF
□ Use as input for the proof checker

■ Introduce proof conclusion explicitly: For each query, derive either
□ the empty clause or
□ a clause over the failed assumptions

19/22

Problem 3: Incremental Iprocessing & Proof Production

Irredundant clauses: Redundant clauses:

Reconstruction stack:
⟨ ⟩

SAT Solver

d

d

d

. . .

?

SAT

■ Restore clause from reconstruction stack

■ What if it gets deleted again in a later query?

20/22

Problem 3: Incremental Iprocessing & Proof Production

Irredundant clauses: Redundant clauses:

Reconstruction stack:
⟨ ⟩

SAT Solver

d

d

d

. . .

?

SAT

■ Restore clause from reconstruction stack
■ What if it gets deleted again in a later query? 20/22

Incremental Inprocessing Rules [FazekasBiereScholl-SAT’19]

𝜑 [𝜌] 𝜎
𝜑 [𝜌 ∧ 𝐶] 𝜎 ♯

𝜑 [𝜌 ∧ 𝐶] 𝜎
𝜑 [𝜌] 𝜎

𝜑 [𝜌 ∧ 𝐶] 𝜎
𝜑 ∧ 𝐶 [𝜌] 𝜎

𝜑 [𝜌] 𝜎
𝜑 ∧ Δ [𝜌] 𝜎 I

LEARN− FORGET STRENGTHEN ADDCLAUSES

𝜑 ∧ 𝐶 [𝜌] 𝜎
𝜑 [𝜌] 𝜎 · (𝜔 : 𝐶) ♭

𝜑 ∧ 𝐶 [𝜌] 𝜎
𝜑 [𝜌] 𝜎 ø

𝜑 [𝜌] 𝜎 · (𝜔 : 𝐶) · 𝜎′

𝜑 ∧ 𝐶 [𝜌] 𝜎 · 𝜎′ 𝜕

WEAKEN+ DROP RESTORE

where ♯ is 𝜑 ∧ 𝜌 |= 𝐶, ♭ is 𝜑 ∧ 𝐶 ≡𝜔
𝑠𝑎𝑡 𝜑, ø is 𝜑 |= 𝐶,

𝜕 is 𝐶 is clean w.r.t. 𝜎′ and I is that each clause in Δ is clean w.r.t. 𝜎

21/22

Problem 3: Possible Solutions

■ Undo corresponding delete step [Kiesl-ReiterWhalen-FMCAD’23]

□ What if restore happened only in a very late query?
− Proof trimming is reduced

■ Reintroduce with original ID (LRAT)
+ Can be kept deleted until restore
+ Easy to verify?
− More information need to be stored on reconstruction stack

■ Extend proof format to support incremental calculus
+ Checkable deletion steps → proofs of satisfiable problems
+ Clear report on what happens in the solver
− Calculus might need some optimizations to keep proofs shorter
− How to prove cleanness in rule Restore?

22/22

	IPASIR-UP: User Propagators for CDCL
	Inprocessing SAT Solvers
	Open Problems with Proofs & Solutions

