October 3, 2023
Shonan Village Center, Japan

IPASIR-UP: User Propagators for CDCL

Based on joint work with:
Aina Niemetz, Mathias Preiner, Markus Kirchweger,
Stefan Szeider, Armin Biere

Katalin Fazekas
TU Wien, Vienna, Austria

Outline

IPASIR-UP: User Propagators for CDCL

Inprocessing SAT Solvers

Open Problems with Proofs & Solutions

Outline

IPASIR-UP: User Propagators for CDCL

Usual Use of SAT Solvers

Problem Actual Answer
Encodel TDecode
Propositional - SAT Solution or Proof

Formula Solver

1/22

Usual Use of SAT Solvers

System and its A bug in
requirements the system
Encodel/\/l E o? TDecode
Propositional SAT .
—_— Solution
Formula Solver

1/22

Usual Use of SAT Solvers

\ T
Ay R(4.4) = 18
/
Encodel TDecode
Propositional SAT Proof
Formula Solver

1/22

Usual Use of SAT Solvers

Problem Actual Answer
Encodel TDecode
Propositional - SAT Solution or Proof
Formula Solver

+ Efficient Tools & Verifiable results

1/22

Verifiable Results — Proofs & Solutions of SAT Solvers

EEa
— = S, > unsr
| ED':':'
{a=T,b=1,c=1} E%
1]

L

m Solution ~ Trail of the solver when all variables are assigned
m Proof ~ Record of all added (and deleted) clauses
m Both are built while the solver decides satisfiability

2/22

Usual Use of SAT Solvers

Problem Actual Answer
Encodel TDecode
Propositional - SAT Solution or Proof

Formula Solver

+ Efficient Tools & Verifiable results
But...

m Complete encoding can be extremely large (or impossible)
m Not everything is relevant to find a refutation
m Not everything is best solved as SAT

3/22

Usual Use of Incremental SAT Solvers

Input problem

SAT-based Tool

Partially
encode

Inremental SAT Solver

Usual Use of Incremental SAT Solvers

SAT-based Tool

Inremental SAT Solver

Usual Use of Incremental SAT Solvers

SAT-based Tool

Inremental SAT Solver

[T T TT1 Solution .
Checker | :

Usual Use of Incremental SAT Solvers

SAT-based Tool

Inremental SAT Solver

L] _
LT T 1]
L] O
Solution | :
% L1 Checker |-

Add T Refine encoding

a
TAssume

Usual Use of Incremental SAT Solvers

SAT-based Tool

Inremental SAT Solver

Usual Use of Incremental SAT Solvers

SAT-based Tool

Inremental SAT Solver

—[TafeT TeT]

Final output

Accept

Solution
Checker | :

Usual Use of Incremental SAT Solvers

m Bounded Model Checking, Planning, MaxSAT, lazy SMT, ...

m Reuse exact same solver instance
+ Smaller initial encoding

+ Can reuse previous reasoning steps instead of repeating them

O Keep learned clauses
O Keep gathered information (e.g. phases, scores)
o Keep applied formula simplifications

+ Assumptions provide some influence over the search
+ IPASIR interface makes SAT Solvers interchangeable

5/22

IPASIR - Interface of Incremental SAT Solving

m Standardized interface, used also at annual competition [BalyoBierelserSinz-JAI'16]
m IPASIR: “Re-entrant Incremental Satisfiability Application Program Interface”
m Supports interactions between solve calls

add
assume

add
assume

6/22

Usual Use of User Propagators
m Incremental SAT is not always enough: CDCL(CAS), Combinatorial problems,
SMT, maxSAT, ...
— Interaction is possible only once the solving is finished

Inspect &
Problem p AnSWer
Influence

Partially
Encode l v TDecode

Propositional Incremental Solutlor_1 /
Formula SAT Solver Refutation

m Requires workarounds and modifications in the SAT solver

— Non-replaceable SAT solver — missed advancements
— New application needs new modifications
— Error prone, potential drop in performance

7/22

IPASIR-UP: Standardize Propagator Interface for CDCL

add
assume

add
assume

m Support interactions during the solve () calls

8/22

IPASIR-UP: IPASIR with User Propagators

cb_check_found_model

phase (Iit))
cb_('j:e\cide . v
m Inspect search Ly .| Solution

A4

Analysis SAT

~——

o Notify all changes to the trail

m Influence search

1. Add propagations (without
adding reason clauses)

backtracking v

<—|q_ Learning .':[UNSAT]

4 4
2. Dictate decisions & phases cb_add_external (]
. cb_propagate
3. Add new clauses (anytime!) Conflict
4. Overrule found solutions a| Analysis
5. Explain relevant propagations —

’

cb_add reason

Solving

9/22

Example C++ implementation

1 class ExternalPropagator {

2 public:

3 virtual ~ExternalPropagator () { }
4

5 virtual void notify_assignment (int 1lit, bool is_fixed) {}
6 virtual void notify_new_decision_level () {}
7 virtual void notify_backtrack (size_t new_level) {}

9 virtual int cb_decide () { return 0; }

10 virtual int cb_propagate () { return 0; }

11 virtual int cb_add_reason_clause_lit (int propagated_lit) {
12 return O0;

13 }

14 virtual bool cb_check_found_model (const std::vector<int> & model) {
15 return true;

16 }

17

18 virtual bool cb_has_external_clause () { return false; }

19 virtual int cb_add_extermnal_clause_1lit () { return 0; }

20 };

10/22

Related Work

B clingo [GebserkaminskiKaufmannOstrowskiSchaubWanko'16]

O A state-of-the-art ASP solver
O Supports theory propagators

m Interactive SAT

O Programmatic SAT: Lynx [GaneshO'DonnellSoosDevadasRinardSolar-Lezama'12]
O IntelSAT [Nadel'22]

m CP solvers [GentMiguelMoore'10]
O Lazy explanation, lazy clause generation
m SAT and Theory solvers of SMT solvers [NieuwenhuisOliverasTinelli'06]

o SAT worker interface [CimattiGriggioSchaafsmaSebastiani’13]
o User propagators of z3 [BjornerEisenhoferKovacs'22]

11/22

IPASIR-UP Experiments

m Extended CaDiCal with IPASIR-UP

O A state-of-the-art incremental, inprocessing, proof producing SAT solver
o ~800 lines of additional code (plus another ~700 for testing)

12/22

IPASIR-UP Experiments

m Extended CaDiCal with IPASIR-UP

O A state-of-the-art incremental, inprocessing, proof producing SAT solver
o ~800 lines of additional code (plus another ~700 for testing)

m Evaluated on two representative use cases
o Combinatorial problem solving: SAT modulo Symmetries (SMS)
+ See talk of Stefan Szeider
o Satisfiability modulo Theories: cvch
+ See talk of Mathias Preiner

12/22

IPASIR-UP Experiments

m Extended CaDiCal with IPASIR-UP

O A state-of-the-art incremental, inprocessing, proof producing SAT solver
o ~800 lines of additional code (plus another ~700 for testing)

m Evaluated on two representative use cases
o Combinatorial problem solving: SAT modulo Symmetries (SMS)
+ See talk of Stefan Szeider
o Satisfiability modulo Theories: cvch
+ See talk of Mathias Preiner

m Generic interface to inspect and influence CDCL search

o Simple & Flexible — relatively easy to implement
o Sufficient to simplify several use cases

12/22

Outline

Inprocessing SAT Solvers

Inprocessing SAT Solvers arvisaloHeuleBiere-lICAR'12]

SAT Solver
Irredundant clauses: Redundant clauses:
L]
EI:“:D I:l %I:l SAT or UNSAT
111 === I 1]
1] L1]

Reconstruction stack:

(LI 1 ri1Crricri

l

dL T T T1
LT T1
d[T 1
LT T]

13/22

Inprocessing Rules [ssrvisaloHeuleBiere-lucAR 12]

m Satisfiability preserving clause addition or removal
m Inprocessing as sequence of abstract states: ¢ [p] o
¢: Irredundant clauses p: Redundant clauses o: Reconstruction stack

¢lp]lo @ plpnClo plpnClo eNC |]
plprClo plplo pANC[plo ¢l[pAClo- (l C)
LEARN FORGET STRENGTHEN WEAKEN

where@ iS oAp=sar pAp AC and@is eAC=L, ¢

Formulas ¢ and ¢ Ap are both satisfiability equivalent to the original input formula. J

14/22

Solution Reconstruction jsirvisaioHeuleBiere-lucar12]

SAT Solver
Irredundant clauses: Redundant clauses:
—favby—
(aVvb) —> —> a b

Reconstruction stack:
a:(aVvb)

l
+ ET5]

m Inprocessing is satisfiability but not model preserving
m Solution reconstruction is needed to get model of original formula

15/22

Outline

Open Problems with Proofs & Solutions

Problem 1: IPASIR-UP & Solution Reconstruction

Irredundant clauses:

Inprocessing SAT Solver

LT
] 1]
g I
1]

Reconstruction stack:

Redundant clauses:

([

|)

Trail:

-

Soldtion
Reconsgruction

IPASIR-UP

cb_check_model()

Theory Solver

vs.
Theory Axioms

VS.

-

m Theory solver works to always keep the trail of SAT solver theory consistent
m In the final solution some values are flipped — theory consistency is unknown

m Non-incremental theory queries

16/22

Problem 1 — Solution Ideas

1. Forbid inprocessing of theory literals (freezing)

+ Very simple implementation (current solution)

— Only very limited inprocessing is allowed
2. Forbid notifying assignments of witness literals

+ No flipped assignments in solution reconstruction

— Many theory literals gets assigned only in the complete model — lazy
3. Apply solution reconstruction on the partial solution

— Not correct (in theory) [FleuryLammich-CADE’23]

— Does not guarantee that last solution reconstruction will not flip values
4. Allow only "theory-consistent" elimination steps

O Theory aware inprocessing — SMT inprocessing [BjernerFazekas-CADE 23]

+ Solution reconstruction maintains theory consistency

— How to do that?

17/22

Problem 2: Incremental Queries & Their Proofs

LI]
[T T 11
L]

LI 11

L]
al L1 T 1T []

SAT

Solver

UNSAT

LT
LI T
d[1]

d T T1]
LI T

d[1]

LT T 1T T 111
dL T T T]
LT T
LT
L]

dL T T T]
1]

1

18/22

Problem 2: Solution Ideas (Format)

m Define incremental DIMACS

o Standardize iCNF
o Use as input for the proof checker

m Introduce proof conclusion explicitly: For each query, derive either

o the empty clause or
O a clause over the failed assumptions

19/22

Problem 3: Incremental Iprocessing & Proof Production

L]
[T T 11
L]

(LT] —
L]

LT]
LT]

SAT Solver
Irredundant clauses: Redundant clauses:
g i LI 1]
] CI1]
LT (I
L1]
Reconstruction stack:
(LT I 1= 0L11
SAT

m Restore clause from reconstruction stack

20/22

Problem 3: Incremental Iprocessing & Proof Production

L]
[T T 11
L]

(LT] —
L]

LT]
LT]

(]

SAT Solver
Irredundant clauses: Redundant clauses:
LI 1]
] CI1]
LT I I
L1]
Reconstruction stack:
[T 1T I13H3=L11
SAT

m Restore clause from reconstruction stack
m What if it gets deleted again in a later query?

20/22

Incremental Inprocessing Rules (razekassierescholi-sar]

olplo e[pAClo e[pAClo plplo
17 —_—]
¢lpnC U@ ¢lelo eAC[p]o W\A[p]U
LEARN™ FORGET STRENGTHEN ADDCLAUSES
soAC pANC[plo ¢lplo-(w:C) -0’
plplo- (w C)@ plplo pANC[plo-o’ 9]
WEAKEN™ DRoP RESTORE

where @ ispApEC, @ngo/\C =0 ¢, @lispEC

9 isCiscleanw.rt. ¢’ and is that each clause in A is clean w.r.t. o

21/22

Problem 3: Possible Solutions

m Undo corresponding delete step [Kies|-ReiterWhalen-FMCAD 23]

o What if restore happened only in a very late query?

— Proof trimming is reduced
m Reintroduce with original ID (LRAT)

+ Can be kept deleted until restore

+ Easy to verify?

— More information need to be stored on reconstruction stack
m Extend proof format to support incremental calculus

+ Checkable deletion steps — proofs of satisfiable problems

+ Clear report on what happens in the solver

Calculus might need some optimizations to keep proofs shorter
How to prove cleanness in rule Restore?

22/22

	IPASIR-UP: User Propagators for CDCL
	Inprocessing SAT Solvers
	Open Problems with Proofs & Solutions

