Higher-Order Model Checking
and its Similarity (?) with SAT Problem

Naoki Kobayashi
The University of Tokyo

Self Introduction

¢ Working on theory & practice for automated
program verification

Automated program verification tools
for functional/imperative/concurrent programs
based on higher—order model checking and
type systems

CHC (a.k.a. CLP) solvers

SMT solvers

SAT solvers

Outline

A brief introduction to higher—order model
checking (HOMC)

— What is HOMGC?
— Applications

¢ Why HOMC works in practice?
— similarity/difference with SAT

Two Notions of
Higher-Order Model Checking

Models Logic

finite state . modal
. finite state systems
model checking L-calculus

Two Notions of
Higher-Order Model Checking

Models Logic
finite state. finite state systems modal
model checking L-calculus
HORS higher-order recursion
: modal
model checking schemes calculus
[Knapik+ 01; Ong 06] (HORS) K
/%/
4 A higher-order tree grammar, A

useful for modeling a certain class of

infinite state systems
__(such as higher-order functional programs))

Two Notions of
Higher-Order Model Checking

Models Logic
finite state . modal
. finite state systems
model checking u-calculus
HORS | higher-order recursion modal
model checking schemes _calculus
[Knapik+ 01; Ong 06] (HORS) H
HFL . higher-order
model checking finite state systems modal fixpoint
[Viswanathan&

——==_ logic (HFL)
Useful for describing

Viswanathan 04] r

| non-regular properties |

Two Notions of

Higher-Order Model Checking

Models Logic
finite state .. modal
: finite state systems
model checking u-calculus
HORS higher-order modal
model checking recursion schemes p-calculus

[Knapik+ 01; Ong 06]

(HORS)

(or tree automata)

HFL

model checking
[Viswanathan&
Viswanathan 04]

finite state systems

higher-order
modal fixpoint
logic (HFL)

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS S —>;’=l\
(regular tree grammar) c B
S—>acB B—>|Io
B>bsS S

Higher-Order Recursion Scheme

(HORS)
¢ Grammar for generating an infinite tree
Order-0 HORS S —>Ia\
(regular tree grammar) cB
S—>achB B—>|?]
B—>bsS | S /\\
c b
S— a — a > a3 — .- a!
/N /N /\ A
| | |
S 3 k
% N

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S >Ac

Ax—a x (A (b x))
S:0,A:0—>0

Notable restriction (compared with ordinary functional programs):
- Rules must be simply-typed.
- There are no pattern matching on trees.

Higher-Order Recursion Scheme (HORS)

¢ Grammar for ger - -*in= ~= fnfinis- tvag
Tree whose paths are
Order-1 HORS labeled by
am+1 bm C
S >Ac 3
Ax—>a x (A(bx) N
S:0,A:0—0 7N
b a
S ->Ac > a —>a - .o |b/\a
/\\ 7/ \\ C | AN
C Albc) ¢ 2@ b
(b c) /N |
b A(b(b c)) C

C

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S >Ac

Ax—>a x (A (bx))
S:0, A:0—> 0

-

HORS

~y
~y

A simply-typed functional program
_ for generating a tree Y,

HORS Model Checking

/Given
G: HORS
¢: a formula of modal p-calculus
(or a tree automaton),
\does Tree(G) satisfy @?

e.g.
- Does every finite path end with “c”?

“u_n»n

- Does “a” occur below “b”?

HORS Model Checking

Order-1 HORS

S >AC
a
Ax—a x (A (b x)) /' \
S:0,A:0—>0 7N

/Ql. Does every finite path end with “c”?) tl)
YES! b
I
C

Q2. Does “a” occur below “b”?

_ J

b
]
NO! tlf
C

HORS Model Checking

Given
G: HORS
¢: a formula of modal p-calculus
(or a tree automaton),
does Tree(G) satisfy ¢@?

_

J

e.g.
- Does every finite path end with “c”?

d_n»n

- Does “a” occur below “b”?

(

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

k

2

p(x))

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

) Type—Bazed Model Checker for Hieher-0Order Recursion Scheme — Mozilla Firefox

LB RED FTA EEG ehv-hE v-LD Al
@ - e &y | |J hittpe A kboecei tohoku.ac jp kobatrecs s b H-
8] H{BBA—2 @ Firefox BFTHLD 0 BEFZ21-2

lj FrontPage — Kobalab Wiki |_] Type-Based Model Checker for. [| 1 03— EREREISAN 0,

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

automata with a trivial acceptance condition.

Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Currently, our model checker only accepts deterministic Buchd

4 The first practical model checker for HORS

¢ Does not immediately suffer from k-EXPTIME
bottleneck

4 A more recent model checker (HorSat2) can scale up

to HORS consisting of 100,000 rules, depending on
__input

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

¢ order-0 ~ finite state model checking
¢ order-1 ~ pushdown model checking

infinite tree P~ transition system

A
C I:I: (a)

) /\ \@)

\
a _n C b
Does “a | - — N
occur 3 Is there a transition
below "b”?) /\\ sequence in which
“Q” occurs after “b”?
c b _

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

¢ order-0 ~ finite state model checking

¢ order-1 ~ pushdown model checking

infinite tree

”~

G

‘o n”n

Does “a

occur
below “b”?

~Y
~y

(infinite-state) transition system

Is there a transition
sequence in which

dn

a” occurs after “b”?

\

Encoding QBF
QBF: Vx. Ay. (xv —y)
HORS:
S = Forall (Ax. Exists Ay. v x (= y))
Forall f=A(fT) (fF)
Exists f=v (f T) (f F)

Encoding QBF
QBF: ¢ := Vx. Jy. (xv —y)
HORS G:
S = Forall (Ax. Exists Ay. v x (= y))
Forall f=A (fT) (FF)
Exists f=v (f T) (f F)

A
Bottom—up) tree automaton A: Vv 4
ATT>T Vv FFoF

PNV A AN

A _F->F v _T-oT
AF.5F vT.o5T T =T =F _|'F T

T F
(with final state: T) T F

@ is true < A accepts Tree(G)

Encoding QBF
QBF: ¢ := Vx. Jy. (xv —y)
HORS G:
S = Forall (Ax. Exists Ay. v x (= y))
Forall f=A (fT) (FF)
Exists f= v (f T) (f F) AN

(Bottom—up) tree automaton A: v

AN AN
V V

AT T-oT vFF—)F/ \ 2 \/ ~
A _F->F v _T->T |
Remarks:
ANF_ —-oF v T _ — T | - HOMC for recursion-free order-1 HORS is
PSPACE-complete
- T—>F - F->T — May be useful when a formula is large but
(With final state: T) can be compactly represented by HORS
/

@ is true < A accepts Tree(G)

Outline

4 A brief introduction to higher—order model
checking (HOMC)

— What is HOMC?
— Applications to program verification

¢ Why HOMC works in practice?
— similarity/difference with SAT

Predicate Abstraction and CEGAR
for HORS Model Checking

[K.&Sato&Unno, PLDI2011]
f(g,x)=g(x+1)

Program is unsafe!
Higher-order
functional program

l

AX.X>0 Predicate
abstraction

l

@her-order
boolean program
f(g, b)=

if b then g(true)
else g(*)

New
oredicates

Error path

property not satisfied

HORS
model checking

property satisfied

Program is safe!

Tool demonstration:
MoCHi

[K&Sato&Unno, 2011]

(a software model checker
for a subset of functional programming
language OCaml)

https://www-kb.is.s.u-tokyo.ac.jp/%7Eryosuke/mochi/

Outline

4 A brief introduction to higher—order model
checking (HOMC)

— What is HOMC?
— Applications to program verification

¢ Why HOMC works in practice?
— similarity/difference with SAT

Why HORS Model Checking Works
(despite k-EXPTIME completeness)

¢ Fixed-parameter tractable (FPT) in the size of G
(fixed parameters: the largest size of types,
the size of formulas)

¢ Given a “certificate” (intersection types),
the validity of the certificate (for both yes/no
answers) can be efficiently checked.

(cf. NP problem)
— Hypothesis: Many HO model checking problems

(obtained from program verification problems)
tend to have small certificates

Empirical Evidence for
"Small Certificate” Hypothesis?

order |[rules |states |#cert. [T, .|
Twofiles 4 11 5 37 >1(Q10710749
TwofilesE |4 12 5 42 >1(010710"49
FileOcamiC |4 23 4 41 >1(Q10710"20
Lock 4 11 4 41 >1(010710720
Orderb 5 9 5 43 >1(010710710"48
mc91 4 49 1 115 >1(10°80
xhtml 2 64 50 101 >10753
exp4-5-3 |4 12 3 137 >101071077
#cert: the number of type bindings

in the certificate found by a model checker

Why HORS Model Checking Works
(despite k-EXPTIME completeness)

¢ Fixed-parameter tractable (FPT) in the size of G
(fixed parameters: the largest size of types,
the size of formulas)

¢ Given a “certificate” (intersection types),
the validity of the certificate (for both yes/no
answers) can be efficiently checked.
(cf. NP problem)

¢ High complexity is due to the expressive power of
HORS (a finite state system of k-EXP(n) states can be
represented in O(n)-size grammar)

HORS describing a finite—state system

with k—-EXP(m) states
(Order-n HORS R,)

S >Fy6. ... 6,6, 6 m
Fo f — Fy (Fy f) k//Z
2
Foi f = Fn (Frn f) 5-%a (60)
F.f > 6, f

G
o F 21 (f2) /k-EXPTIME algorithm for A

order-k HORS

~
~

c Polynomial time algorithm for
o > C finite state model checkin

6, fz—>f(f 2)

G,z—>az

HORS describing a finite—state system

with k—-EXP(m) states
(Order-n HORS R,)

S >Fy6. ... 6,6, 6 m
Fo f — Fy (Fy f) k//Z
2
Foi f = Fn (Frn f) 5-%a (60)
F.f > 6, f

6 fz—f(f2) /fixed-par'ame'rer' polynomial \
time algorithm for order-k
G, fz-of(fz) HORS

G1z->az P>I ial time algorithm f
6o > c olynomial time algorithm for

_ \ finite state model checking /

Conclusion
¢ HOMC subsumes many decision problems at
low—order
— Finite state model checking

— Pushdown model checking
— SAT/QBF solving

¢ Applications to higher—order program
verification

¢ HOMC works despite extremely high complexity

== as long as there are small certificates

¢ More efficient HOMC solver using SAT
technology?

	Higher-Order Model Checking�and its Similarity (?) with SAT Problem
	Self Introduction
	Outline
	Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	スライド番号 10
	スライド番号 11
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	Encoding QBF
	Encoding QBF
	Encoding QBF
	Outline
	Predicate Abstraction and CEGAR �for HORS Model Checking�[K.&Sato&Unno, PLDI2011]
	Tool demonstration:�MoCHi�[K&Sato&Unno, 2011]�https://www.kb.is.s.u-Tokyo.ac.jp/~Ryosuke/mochi/�(a software model checker �for a subset of functional programming language OCaml)�
	Outline
	Why HORS Model Checking Works�(despite k-EXPTIME completeness)
	Empirical Evidence for �“Small Certificate” Hypothesis?
	Why HORS Model Checking Works�(despite k-EXPTIME completeness)
	HORS describing a finite-state system �with k-EXP(m) states
	HORS describing a finite-state system �with k-EXP(m) states
	Conclusion

