
Higher-Order Model Checking
and its Similarity (?) with SAT Problem

Naoki Kobayashi
The University of Tokyo

Self Introduction

Working on theory & practice for automated
program verification

SAT solvers

Automated program verification tools
for functional/imperative/concurrent programs

based on higher-order model checking and
type systems

CHC (a.k.a. CLP) solvers

SMT solvers

Outline

A brief introduction to higher-order model
checking (HOMC)

– What is HOMC?

– Applications

Why HOMC works in practice?

– similarity/difference with SAT

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order recursion
schemes
(HORS)

modal
µ-calculus

A higher-order tree grammar,
useful for modeling a certain class of

infinite state systems
(such as higher-order functional programs)

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order recursion
schemes
(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Useful for describing
non-regular properties

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

(or tree automata)

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Two Notions of
Higher-Order Model Checking

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)

S → a c B
B → b S

S → a
 c B

B → b
S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o

Notable restriction (compared with ordinary functional programs):
- Rules must be simply-typed.
- There are no pattern matching on trees.

Higher-Order Recursion Scheme (HORS)
Grammar for generating an infinite tree

Order-1 HORS

S → A c
A x → a x (A (b x))

S: o, A: o→ o

→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a

a

b

c

a

b

b

c

a

b

b

b
c

...

Tree whose paths are
labeled by
am+1 bm c

S

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o

HORS
≈

A simply-typed functional program
for generating a tree

HORS Model Checking

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: HORS
ϕ: a formula of modal µ-calculus

(or a tree automaton),
does Tree(G) satisfy ϕ?

HORS Model Checking

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o
c a

a

b

c

a

b

b

c

a

b

b

b
c

...
Q1. Does every finite path end with “c”?

YES!
Q2. Does “a” occur below “b”?

NO!

HORS Model Checking

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: HORS
ϕ: a formula of modal µ-calculus

(or a tree automaton),
does Tree(G) satisfy ϕ?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

p(x)
2

..
2

2

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

 The first practical model checker for HORS

 Does not immediately suffer from k-EXPTIME
bottleneck

 A more recent model checker (HorSat2) can scale up
to HORS consisting of 100,000 rules, depending on
input

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system≈

Does “a”
occur

below “b”?
Is there a transition
sequence in which

“a” occurs after “b”?

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

infinite tree (infinite-state) transition system≈

Does “a”
occur

below “b”?

Is there a transition
sequence in which

“a” occurs after “b”?

c a

a

b

c

a

b

b

c

a

b

b

b

...

a

c b

a

b

a

b

a ...

...

Encoding QBF
QBF: ∀x. ∃y. (x∨ ¬y)

HORS:

S = Forall (λx. Exists λy. ∨ x (¬ y))

Forall f = ∧ (f T) (f F)

Exists f = ∨ (f T) (f F)
∧

∨ ∨

∨

T ¬

T

∨

T ¬

F

∨

F ¬

T

∨

F ¬

F

Encoding QBF
QBF: ϕ := ∀x. ∃y. (x∨ ¬y)

HORS G:

S = Forall (λx. Exists λy. ∨ x (¬ y))

Forall f = ∧ (f T) (f F)

Exists f = ∨ (f T) (f F)

(Bottom-up) tree automaton A:

∧ T T → T ∨ F F → F

∧ _ F → F ∨ _ T → T

∧ F _ → F ∨ T _ → T

¬ T → F ¬ F → T

(with final state: T)

ϕ is true  A accepts Tree(G)

∧

∨ ∨

∨

T ¬

T

∨

T ¬

F

∨

F ¬

T

∨

F ¬

F

Encoding QBF
QBF: ϕ := ∀x. ∃y. (x∨ ¬y)

HORS G:

S = Forall (λx. Exists λy. ∨ x (¬ y))

Forall f = ∧ (f T) (f F)

Exists f = ∨ (f T) (f F)

(Bottom-up) tree automaton A:

∧ T T → T ∨ F F → F

∧ _ F → F ∨ _ T → T

∧ F _ → F ∨ T _ → T

¬ T → F ¬ F → T

(with final state: T)

ϕ is true  A accepts Tree(G)

∧

∨ ∨

∨

T ¬

T

∨

T ¬

F

∨

F ¬

T

∨

F ¬

F

Remarks:
- HOMC for recursion-free order-1 HORS is
PSPACE-complete
- May be useful when a formula is large but
can be compactly represented by HORS

Outline

A brief introduction to higher-order model
checking (HOMC)

– What is HOMC?

– Applications to program verification

Why HOMC works in practice?

– similarity/difference with SAT

Predicate Abstraction and CEGAR
for HORS Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

f(g, b)=
if b then g(true)
else g(*)

HORS
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes

Program is unsafe!

New
predicates

Tool demonstration:
MoCHi

[K&Sato&Unno, 2011]
https://www.kb.is.s.u-Tokyo.ac.jp/~Ryosuke/mochi/

(a software model checker
for a subset of functional programming

language OCaml)

https://www-kb.is.s.u-tokyo.ac.jp/%7Eryosuke/mochi/

Outline

A brief introduction to higher-order model
checking (HOMC)

– What is HOMC?

– Applications to program verification

Why HOMC works in practice?

– similarity/difference with SAT

Why HORS Model Checking Works
(despite k-EXPTIME completeness)
Fixed-parameter tractable (FPT) in the size of G

(fixed parameters: the largest size of types,
the size of formulas)
Given a “certificate” (intersection types),

the validity of the certificate (for both yes/no
answers) can be efficiently checked.
(cf. NP problem)
– Hypothesis: Many HO model checking problems

(obtained from program verification problems)
tend to have small certificates

Empirical Evidence for
“Small Certificate” Hypothesis?

order rules states #cert. |Γmax|
Twofiles 4 11 5 37 >1010^10^49

TwofilesE 4 12 5 42 >1010^10^49

FileOcamlC 4 23 4 41 >1010^10^20

Lock 4 11 4 41 >1010^10^20

Order5 5 9 5 43 >1010^10^10^48

mc91 4 49 1 115 >1010^80

xhtml 2 64 50 101 >10753

exp4-5-3 4 12 3 137 >1010^10^7

#cert: the number of type bindings
in the certificate found by a model checker

Why HORS Model Checking Works
(despite k-EXPTIME completeness)
 Fixed-parameter tractable (FPT) in the size of G

(fixed parameters: the largest size of types,
the size of formulas)

 Given a “certificate” (intersection types),
the validity of the certificate (for both yes/no
answers) can be efficiently checked.
(cf. NP problem)

 High complexity is due to the expressive power of
HORS (a finite state system of k-EXP(n) states can be
represented in O(n)-size grammar)

HORS describing a finite-state system
with k-EXP(m) states

Order-n HORS Rm,k
S → F0 Gk-1 ... G2 G1 G0

F0 f → F1 (F1 f)
...

Fm-1 f → Fm (Fm f)
Fm f → Gn f

Gk f z → f (f z)
...
G2 f z → f (f z)
G1 z → a z
G0 → c

m
2

..
2

2
S →* a (G0)

k

k-EXPTIME algorithm for
order-k HORS
≈
Polynomial time algorithm for
finite state model checking

HORS describing a finite-state system
with k-EXP(m) states

Order-n HORS Rm,k
S → F0 Gk-1 ... G2 G1 G0

F0 f → F1 (F1 f)
...

Fm-1 f → Fm (Fm f)
Fm f → Gn f

Gk f z → f (f z)
...
G2 f z → f (f z)
G1 z → a z
G0 → c

m
2

..
2

2
S →* a (G0)

k

fixed-parameter polynomial
time algorithm for order-k
HORS
>
Polynomial time algorithm for
finite state model checking

Conclusion
HOMC subsumes many decision problems at

low-order

– Finite state model checking

– Pushdown model checking

– SAT/QBF solving

Applications to higher-order program
verification

HOMC works despite extremely high complexity

… as long as there are small certificates

More efficient HOMC solver using SAT
technology?

	Higher-Order Model Checking�and its Similarity (?) with SAT Problem
	Self Introduction
	Outline
	Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	スライド番号 10
	スライド番号 11
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	Encoding QBF
	Encoding QBF
	Encoding QBF
	Outline
	Predicate Abstraction and CEGAR �for HORS Model Checking�[K.&Sato&Unno, PLDI2011]
	Tool demonstration:�MoCHi�[K&Sato&Unno, 2011]�https://www.kb.is.s.u-Tokyo.ac.jp/~Ryosuke/mochi/�(a software model checker �for a subset of functional programming language OCaml)�
	Outline
	Why HORS Model Checking Works�(despite k-EXPTIME completeness)
	Empirical Evidence for �“Small Certificate” Hypothesis?
	Why HORS Model Checking Works�(despite k-EXPTIME completeness)
	HORS describing a finite-state system �with k-EXP(m) states
	HORS describing a finite-state system �with k-EXP(m) states
	Conclusion

