
BNN verification dataset for
Max-SAT Evaluation 2020
Masahiro Sakai (sakai@preferred.jp)

NII Shonan Meeting (No.180) on "The Art of SAT"
Oct. 2023

2

Masahiro Sakai (酒井 政裕) @ Preferred Networks, Inc.

1. Japanese Translation of
“Software Abstractions”
A book about Alloy (a SAT-based finite
model finder) and Formal Methods

2. CForge: Model-Checking C Programs
against JML-like Specification Language

3. toysat
SAT/Max-SAT/PB/SMT/QBF/MILP solver
written in Haskell

4. Binarized Neural Network verification
instances for Max-SAT Evaluation 2020

Twitter: @masahiro_sakai github:msakai/toysolver

A hobby project for learning solver
algorithms, but submitted to some past
PB / Max-SAT / SMT competitions.

Also we combined BMC and UNSAT-core
enumeration for precondition inference

Some of my SAT/SMT-related activities

(Work in
Toshiba)

github:msakai/bnn-verification

https://github.com/msakai/toysolver
https://github.com/msakai/bnn-verification

3

I have been using SAT/SMT and also implementing my own solver.
Then, I learned machine learning, joined Preferred Networks in 2017, and
worked on projects that uses (mainly) machine learning.

So, I’m interested in the overlapping area of machine learning and SAT/SMT.

Personal Motivation

4

Thank you to the authors of [Narodytska+, AAAI-18] and organizers of the
MaxSAT Evaluation 2022.

Acknowledgement

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf

This work is based on the paper:

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

5

● 1. Background: DNN verification
● 2. Background: Binarized Neural Networks (BNN)
● 3. (Max-)SAT-based verification

○ Models
○ SAT-encoding
○ Cost Function and Soft Clauses

● 4. Result in the Max-SAT Evaluation 2020
● 5. Conclusion

Outline

6

1. Background on DNN verification

7

● Deep neural networks (DNN) achieved impressive performance in various
tasks, But …

● “Explaining and Harnessing Adversarial Examples” [Goodfellow+, ICLR
2015]

● “Intriguing properties of neural networks” [Szegedy+, ICLR 2014]
● …

Adversarial perturbations

8

● Such non-robustness may result in unsafe systems, or restrict
the use of DNNs in safety-critical applications.
○ e.g. autonomous vehicles, airborne collision avoidance

systems, deep-brain stimulation against epileptic seizures,
robots, etc.

● Hence, there is a need for formal guarantees about their
behavior.

● There are lots of research using e.g. SAT, SMT, CEGAR, MILP

Formal guarantees on DNN behavior

9

For example, a property called local adversarial robustness can be checked
by SAT/SMT by checking if

 ǁτǁ≤ ε ∧ f(x+τ) ≠ f(x)
is satisfiable.

However, neural network f is often very large, complex, and contains
massive amounts of floating point operations.
⇒ Difficulty for SAT/SMT solvers

There are many researches for overcoming the problem.

Basic approach

10

Focusing on specific type of NN

● [Narodytska+, AAAI-18] is one such research
● They focus on a specific type of neural networks called Binalized Deep

Neural Networks (BNN)

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

11

2. Background:
Binarized Neural Networks (BNN)

12

Binarized Neural Networks (BNN)

● Large number of floating point
operations are computationally
expensive and require big memory

● Usually float32 is used
● Quantization is a technique to use

reduces bit-width floating point,
or small bit-width integer instead

● In the extreme case, binary values
{-1, +1} is used

● One such attempt is Binarized
Neural Networks [Hubara+, NIPS
2016]

https://papers.nips.cc/paper/6573-binarized-neural-networks

https://papers.nips.cc/paper/6573-binarized-neural-networks

13

Binarized Neural Networks (BNN)

y = σ(Wx + b)

Typical NN Layer BNN Layer Example

x ∈
Rn

W ∈
Rm×n

b ∈ Rm

σ is some
non-linear function
such as ReLU or
sigmoid y ∈ Rm

y = sign(Wx + b)

x ∈ {-1,+1}n
W ∈

{-1,+1}m×n

y ∈
{-1,+1}m

still in Rm

Real arithmetic is still used in
the middle, but input/output
and W are binalized

14

● Binarization is for performance (e.g. computation time,
memory usage, energy consumption, circuit area, …)

● But, at the same time, it is very convenient for SAT solvers

Binarized Neural Networks (BNN)

15

3. (Max-)SAT-based verification

Our approach is based on [Narodytska+, AAAI-18]
Since many parts are the same, I will talk only the overall idea
and the details of the difference.

16

Decision problem ⇒ Optimization probem

[Narodytska+, AAAI-18] verifies absence of adversarial examples (among other
properties) by showing

 ǁτǁ∞ ≤ ε ∧ f(xorig) ≠ f(xorig + τ)
is UNSAT for given f, x, and ε.

However, this can be generalized to an optimization problem

 min. ǁτǁ∞ s.t. f(xorig) ≠ f(xorig + τ)
i.e. finding minimum adversarial perturbation.

(Actually, we encode the objective function as a set of weighted soft clauses to
use Max-SAT solvers)

17

Models

18

● High-level structure of our model:

● Input image x ∈ {0, …, 255}784
○ 784 (= 28×28) dimension vector of 8-bit integers

● Binarized image bin(x) ∈ {−1, +1}784

○ x is converted to binarized image {−1, +1}784

○ Note that the binarization threshold is different depending on
components (i.e. pixel locations)

High-level structure of our model and input data

19

● High-level structure of our model:

● We denote composition of internal layers and a output linear layer as
g : {−1, +1}784 → R10

● The output g(bin(x)) ∈ R10 is called logits

Internal and output layers

20

● High-level structure of our model:

● g(bin(x)) ∈ R10 is called logits
● argmax compare the logits and choose a class c with maximal logit

Internal and output layers

21

● High-level structure of our model:

● We implemented the model and trained using deep learning framework
Chainer

Implementation and Training

https://chainer.org/

22

● Trained three models for three datasets
○ MNIST and its two variants: MNIST-rot and MNIST-back-image

Implementation and Training

MNIST MNIST-rot MNIST-back-image
100 sample images from these dataset

23

SAT encoding

24

● [Narodytska+, AAAI-18] uses perturbation τ as decision variables and add
constraints like τ ∈ [-ε, +ε]784 and xorig+τ ∈ [0, 255]784 which involve integer
addition and comparison

● We instead use binarized image z = bin(xorig+τ) ∈ {−1, +1}784 as decision variables
○ Once you find a desired binarized image, it is easy to construct smallest

perturbation in original image space
○ Reduced number of decision variables and constraints

Inputs and decision variables

25

● The g part is encoded to CNF in a way similar to [Narodytska+, AAAI-18]
○ Detail omitted here, but can be encoded to clauses and cardinality

constraints
● We use totalizer [Bailleux, CP 2003] instead of sequential counter

[Sinz+, CP 2005] for encoding cardinality constraints to reduce formula size

Relationship between inputs and logits

26

● Let logits := g(bin(x))
● Let y := {yc}c be ten boolean variables such that yc ⇔ f(x)=c

● Since y is one-hot vector
○ Σc yc = 1

● If yc is true, c-th logit must be largest
○ yc → logitsc ≥ logitsc′ for all c′.

Relationship between logits and outputs

(Conditional) cardinality
constraints are encoded
using totalizer

A cardinality constraints if we
expand the definition of logits

27

● Let logits := g(bin(x))
● Let y := {yc}c be ten boolean variables such that yc ⇔ f(x)=c

● Finally, we want the input to be misclassified
● If the (true) label of the image is c, we add (¬ yc)

Relationship between logits and outputs

28

Cost Function
and Soft Clauses

29

● To find the smallest adversarial perturbation, we have to
penalize modification from xis

● Our decision variables are binarized pixels zis instead of τis
● Therefore, the basic idea is to add the following as soft

constraints with appropriate weights

Turning cost functions into soft constraints

zi = bini(xorig,i)

This is a constant

30

● Let τi be the change of xi
○ xi = xorig,i + τi

● Let δi be the smallest perturbation to change zi
○ bini(xorig,i + δi) ≠ bini(xorig,i)

● Since we are minimizing τ, we can let
○ τi = (if zi = bini(xorig,i) then 0 else δi)

Some preparation

31

● ǁτǁp = (|τ1|
p + … + |τn|

p)(1/p)

● Since (-)(1/p) is monotone, minimizing ǁτǁp is
equivalent to minimizing |τ1|

p + … + |τn|
p

● Since τi = (if zi = bini(xorig,i) then 0 else δi), it is equivalent
to have (zi = bini(xorig,i)) as a soft constraint with weight
|δi|

p

Lp-norm case for p ≠ ∞

32

● ǁτǁ∞ = max(|τ1|, …, |τn|)

● Let Δ = { |δi| } = {w1 < … < w|Δ|}
● Introduce relaxation variables {rk}k∈1..|Δ| with

○ ¬rk → (zi = bini(xorig,i))
for all i with |δi| = wk

○ rk → rk−1 (they are lower closed)
○ (¬rk) with cost (wk - wk-1)

L∞-norm case

r1

r|Δ|

rk

…

only zi with
|δi| ≤ wk
can be changed

33

Result in
the Max-SAT Evaluation 2020

34

Instance generation and submission

● Average size of generated instance
○ #variables = 1.8 M
○ #clauses = 132 M
○ (uncompressed) WCNF filesize = 3.6 GB

● Submitted 60 instances
○ 3 dataset and trained model
○ 2 images for each of 10 digit class
○ only used L∞-norm setting

35

5 among 60 submitted instances were used

Instance Image Label

bnn_mnist_7_label9_adversarial_norm_inf_totalizer.wcnf.gz 9

bnn_mnist_back_image_32_label3_adversarial_norm_inf_tot
alizer.wcnf.gz

3

bnn_mnist_rot_16_label5_adversarial_norm_inf_totalizer.wc
nf.gz

5

bnn_mnist_rot_8_label1_adversarial_norm_inf_totalizer.wcnf
.gz

1

bnn_mnist_back_image_73_label5_adversarial_norm_inf_tot
alizer.wcnf.gz

5

36

Result: Complete track (Weighted)

Instance maxino-pref maxino Pacose UWrMaxSat MaxHS QMaxSAT RC2-B / RC2-A /
smax-minisat /
smax-mergesat

… 270.62 269.06 402.17 648.45 991.52 141.42 3600.0

… 279.84 277.76 1101.24 795.81 1733.77 1729.06

… 367.28 367.06 221.87 657.69 1006.6 704.83

… 84.87 84.06 347.71 588.25 1083.57 3600.0

… 2215.51 2232.61 3600.0 3600.0 3600.0 3600.0

https://maxsat-evaluations.github.io/2020/rankings.html

https://maxsat-evaluations.github.io/2020/rankings.html

37

Result: optimal objective values

Instance Image Label Minimal ǁτǁ∞

bnn_mnist_7_label9_adversarial_norm_inf_to
talizer.wcnf.gz

9 1

bnn_mnist_back_image_32_label3_adversari
al_norm_inf_totalizer.wcnf.gz

3 2

bnn_mnist_rot_16_label5_adversarial_norm_i
nf_totalizer.wcnf.gz

5 1

bnn_mnist_rot_8_label1_adversarial_norm_in
f_totalizer.wcnf.gz

1 1

bnn_mnist_back_image_73_label5_adversari
al_norm_inf_totalizer.wcnf.gz

5 4

Very small ǁτǁ∞ is enough ⇒ Those models are not robust at all… 😢

38

Some slides from organizer’s talk

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf

39

Some slides from organizer’s talk

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf

https://maxsat-evaluations.github.io/2020/mse20-talk.pdf

40

Conclusion

41

Some concluding remarks (1)

● Max-SAT solvers can solve big instances (as mentioned by
organizer)
○ Even w/ 1.8M variables and 132M constraints
○ I thought that the problem size MaxSAT solver can handle

was limited (compared to SAT), but it can solve larger than I
thought!

● Disclaimer:
○ This is based on the 2018 paper and the work was done on

2020, so some part of the talk may already be out of date

42

● Submitting problems was an interesting and enjoyable
experience for me

● Future interaction of Machine Learning and SAT/SMT
○ This is still a toy problem and model (MNIST is like “Hello

World” in machine learning)
○ But I hope these two areas to have more fruitful interactions in

the future

Some concluding remarks (2)

43

Any Questions or Comments?

Source code and dataset are available at:
github.com/msakai/bnn-verification

https://github.com/msakai/bnn-verification

Making the real world computable

