
CaDiCaL(T ): CaDiCaL as CDCL(T ) Engine in cvc5

Aina Niemetz and Mathias Preiner

Shonan Meeting 180, October 2–5, 2023



The cvc5 SMT Solver

∠ state-of-the-art SMT solver

∠ most recent incarnation of the CVC tools

∠ joint project led by Stanford University and University of Iowa in collaboration with

Universidade Federal de Minas Gerais (Brazil)

Bar Ilan University (Israel)

∠ based on CDCL(T ) framework

∠ supports wide range of theories in combination with quantifiers

all SMT-LIB theories + non-standard theories and theory extensions

∠ support for proofs (incl. preprocessing, rewriting)

∠ capabilities beyond standard SMT

SyGuS, abduction, interpolation, quantifier elimination, optimization (WIP)

1



The CDCL(T ) Lazy SMT Framework

∠ propositional abstraction of the input formula

∠ iteratively refined until abstraction is T -consistent or unsat

∠ theory layer guides the search of the SAT solver

∠ online, tight integration of SAT solver

theory layer interacts with SAT solver during the search

backward communication channel to notify theory layer about variable assignments,

decisions, backtracks

theory layer derives conflicts, propagates theory literals, suggests decisions based on

theory-guided heuristics

2



CDCL(T ) SAT Solver: Current State-of-the-Art

∠ no standardized SAT solver interface

for interactive incremental SAT solving

∠ solver-specific workarounds and modifications to the SAT solver

∠ error prone, high potential for unintentional performance hits

∠ difficult to replace

∠ missed opportunities to take advantage of improvements in SAT

Situation in cvc5 (until recently)

∠ integrates highly customized version of MiniSat

produces resolution proofs

push/pop for adding/deleting clauses and variables

custom theory-guided decision heuristics

3



CDCL(T ) SAT Solver: Current State-of-the-Art

∠ no standardized SAT solver interface

for interactive incremental SAT solving

∠ solver-specific workarounds and modifications to the SAT solver

∠ error prone, high potential for unintentional performance hits

∠ difficult to replace

∠ missed opportunities to take advantage of improvements in SAT

Situation in cvc5 (until recently)

∠ integrates highly customized version of MiniSat

produces resolution proofs

push/pop for adding/deleting clauses and variables

custom theory-guided decision heuristics

3



IPASIR-UP in a Nutshell

IPASIR-UP = IPASIR + User Propagators (Fazekas et al. 2023)

∠ presented at SAT 2023

∠ a SAT solver interface for

∠ interactive incremental SAT solving

Problem

Propositional

Formula

Incremental

SAT Solver

Solution /

Refutation

Answer

Partially

Encode
Decode

Inspect &

Influence

∠ our focus: Integration as CDCL(T ) SAT solver

4



IPASIR-UP in a Nutshell

IPASIR-UP = IPASIR + User Propagators (Fazekas et al. 2023)

∠ presented at SAT 2023

∠ a SAT solver interface for

∠ interactive incremental SAT solving

SMT Problem

Propositional

Formula

Incremental

SAT Solver

Theory Solvers

Solution /

Refutation

Answer

Partially

Encode
DecodeInfluence Inspect

∠ our focus: Integration as CDCL(T ) SAT solver

4



IPASIR-UP in cvc5

CaDiCaL(T ) Integration (via IPASIR-UP)

∠ Full utilization of interface

∠ ∼500 LOC in C++ for implementing interface

(∼800 including comments)

∠ “easily” replaced with any SAT solver implementing IPASIR-UP

∠ supports all* cvc5 features

∠ *proof support work-in-progress

∠ changes compared to MiniSat

resolution proofs → DRAT/LRAT proofs (WIP)

native push/pop → activation literals

5



IPASIR-UP Interface

Notifications (for Inspecting CDCL Search)

∠ notify assignment

∠ notify new decision level

∠ notify backtrack

Callbacks (for Influencing CDCL Search)

∠ cb propagate

∠ cb add reason clause lit

∠ cb decide

∠ cb add external clause lit

∠ cb check found model

6



Assignment Notifications

notify assignment

∠ sends assignment notification for observed variables

∠ track assignment for theory literals

constructs (partial) assignment of propositional abstraction

∠ track whether assignment is

decision

fixed

∠ notify theory solvers about assigned theory literal,

e.g., if (observed) variable corresponding to theory literal a < 42 is assigned to

true: send a < 42 to arithmetic solver

false: send a ≥ 42 to arithmetic solver

7



Decision Notifications

∠ Used to manage the incremental state of cvc5

∠ backtrackable data structures (context-dependent), associated with a context

SAT context, backtracks when SAT solver backtracks (decision-level push/pop)

user context (SMT-level push/pop)

notify new decision level

∠ push SAT context

∠ track decision + level

notify backtrack (L)

∠ pop SAT context to L

∠ undo assignments at level > L

∠ resend “popped” fixed theory literals

theory literals fixed at levels > L are popped

fixed assignments only notified once

resend fixed theory literals at level L

8



Check Full Assignment for T -Consistency

cb check found model

∠ called when SAT solver found satisfying assignment

▷ returns true if assignment T -consistent, false otherwise

∠ checks if assignment is T -consistent (full effort check)

theory solvers check T -consistency of assigned theory literals

∠ send conflict clause

∠ send lemmas
∠ send theory propagations

▷ adds eager explanations at this point to force SAT solver to propagate

T -consistent if:

∠ theory solvers performed all checks and

∠ no new variables were added and

∠ no new lemmas or conflicts sent, i.e., no new clauses added

9



Injecting Decisions

cb decide

∠ called before SAT solver makes decision

∠ used to inject theory-guided decisions

theory decisions (required)

▷ decision strategies used by theory solvers

decision requests (optional)

▷ custom decision heuristics

▷ e.g.: justification heuristic, chooses next decision based on structure of formula

∠ may discover partial satisfying assignment

triggers full effort check, i.e., calls cb check found model

stops search if current assignment is T -consistent

10



Adding Clauses (during Search)

cb add external clause lit

∠ clauses added during search are buffered

theory lemmas

theory conflicts

∠ buffered clauses are only added during callback

cb has external clause

∠ checks whether new clauses are pending

11



Propagations

cb propagate

∠ called after SAT solver is done with propagation

∠ performs lightweight checks in theory solvers (standard effort check)

∠ theory propagations

cb add reason clause lit (prop lit)

∠ called when theory propagation prop lit is involved in conflict

∠ explain theory propagation

∠ adds explanation (reason clause)

12



SMT push/pop via Activation Literals

∠ happens between SAT solver calls, not during search

∠ push assertion level

create fresh activation literal ln for pushed level n

add ln to each clause added in level n

prior to solving, assume ¬li for i ∈ {1, n}

∠ pop assertion level

add unit clause {ln} for popped level n

▷ garbage collects all clauses added at level n

unobserve and fix value of variables introduced in n

(important for performance)

∠ renotify fixed literals with fixed level > intro level

requires keeping track of assertion levels when

∠ variable was introduced

∠ variable assignment was fixed

(set-logic ...)

...

(assert ...) ; A1

(assert ...) ; A2

(push 1)

(assert ...) ; A3

(check-sat)

(pop 1)

(check-sat)

...

13



Evaluation

∠ all incremental and non-incremental benchmarks of SMT-LIB 2023

434, 212 non-incremental benchmarks

43, 287 incremental benchmarks

∠ 300s time limit, 8GB memory limit

∠ comparison of cvc5-1.0.8-dev with

MiniSat (custom, based on 2.2.0)

CaDiCaL (IPASIR-UP, version 1.7.4)

14



Evaluation: SMT-COMP Non-Incremental Divisions

cvc5+MiniSat cvc5+CaDiCaL

Division solved time [s] solved time [s]

Arith (6,925) 6,341 181,329 6,332 183,417

BitVec (6,185) 5,645 168,844 5,625 175,110

Equality (12,159) 5,331 2,060,608 5,337 2,059,279

Equality+LinearArith (56,562) 45,970 3,196,706 45,966 3,198,129

Equality+MachineArith (10,911) 1,073 2,958,372 1,075 2,958,746

Equality+NonLinearArith (21,162) 13,333 2,425,551 13,123 2,474,917

FPArith (3,979) 3,133 275,579 3,138 272,751

QF Bitvec (46,191) 43,735 1,092,892 43,713 1,092,907

QF Datatypes (8,403) 8,083 109,941 8,158 84,593

QF Equality (8,054) 8,043 9,338 8,047 6,968

QF Equality+Bitvec (16,801) 15,922 355,232 16,132 263,786

QF Equality+LinearArith (3,644) 3,464 65,242 3,497 52,176

QF Equality+NonLinearArith (906) 721 61,692 711 64,217

QF FPArith (76,252) 76,072 93,150 76,087 77,682

QF LinearIntArith (16,389) 11,530 1,604,847 12,017 1,489,186

QF LinearRealArith (2,008) 1,686 142,921 1,784 107,522

QF NonLinearIntArith (25,446) 13,076 4,080,649 14,058 3,696,580

QF NonLinearRealArith (12,134) 11,155 336,630 11,247 309,251

QF Strings (100,101) 98,407 619,928 98,870 483,260

Total (434,212) 372,720 19,839,459 374,917 19,050,487

∠ +2197 solved instances

∠ ∼ 25% faster on commonly

solved instances

∠ 2–4× faster in several logics

∠ 13 of 19 divisions improved

quantifier-free better overall

quantified logics a bit behind

∠ promising performance without

much tuning or optimizations

∠ solid baseline for future tuning

with IPASIR-UP interface

15



Evaluation: SMT-COMP Incremental Divisions

cvc5+MiniSat cvc5+CaDiCaL

Division solved time [s] solved time [s]

Arith (11) 41,362 233 41,362 240

BitVec (18) 36,114 2,992 36,117 3,031

Equality (4,067) 46,256 620,984 46,216 623,400

Equality+LinearArith (1,894) 431,172 57,390 430,552 59,637

Equality+MachineArith (4) 818 310 818 309

Equality+NonLinearArith (4,374) 82,721 651,804 83,801 644,742

FPArith (10) 3,422 1,849 3,421 1,849

QF Bitvec (2,590) 51,334 63,165 51,260 62,036

QF Equality (1,778) 29,981 4,616 29,982 4,588

QF Equality+Bitvec (3,633) 7,677 148,084 7,620 153,446

QF Equality+Bitvec+Arith (664) 959 51,776 985 44,466

QF Equality+LinearArith (3,947) 2,266,894 130,331 1,893,335 133,167

QF Equality+NonLinearArith (1,018) 96,917 24,307 92,813 23,932

QF FPArith (19,188) 538,936 955,264 560,379 745,166

QF LinearIntArith (69) 1,332,173 17,582 1,089,226 17,109

QF LinearRealArith (10) 482 3,004 571 2,918

QF NonLinearIntArith (12) 349,862 3,603 326,463 3,603

Total (43,287) 5,317,080 2,737,301 4,694,921 2,523,646

∠ improvements in some logics

∠ overall performance not there yet

∠ poor performance on benchmarks

with many check-sat calls

∠ overhead of activation literals?

16



Discussion on Incremental Performance

Observation

Performance poor on benchmarks with

large number of check-sat calls

Example: kundu true-*.smt2 (QF LIA)

∠ 900k+ check-sat calls

∠ solved queries within 300 seconds

MiniSat: 148, 997

CaDiCaL: 103, 843

Activation Literal Overhead Experiment

(push 1) . . . fresh literal ln
(assert true) . . . add clause (ln ∨ ⊤)

(check-sat) . . . assume ¬ln
(pop 1) . . . add clause (ln)

∠ Repeated N times in one benchmark

N MiniSat CaDiCaL Slowdown

10k 265ms 462ms 1.7×
25k 625ms 1.8s 2.8×
50k 1.2s 5.8s 4.8×
75k 1.8s 11.9s 6.6×

100k 2.5s 20.3s 8.1×

17



Discussion on Incremental Performance

Observation

Performance poor on benchmarks with

large number of check-sat calls

Example: kundu true-*.smt2 (QF LIA)

∠ 900k+ check-sat calls

∠ solved queries within 300 seconds

MiniSat: 148, 997

CaDiCaL: 103, 843

Activation Literal Overhead Experiment

(push 1) . . . fresh literal ln
(assert true) . . . add clause (ln ∨ ⊤)

(check-sat) . . . assume ¬ln
(pop 1) . . . add clause (ln)

∠ Repeated N times in one benchmark

N MiniSat CaDiCaL Slowdown

10k 265ms 462ms 1.7×
25k 625ms 1.8s 2.8×
50k 1.2s 5.8s 4.8×
75k 1.8s 11.9s 6.6×

100k 2.5s 20.3s 8.1×

17



Discussion on Incremental Performance

Observation

Performance poor on benchmarks with

large number of check-sat calls

Example: kundu true-*.smt2 (QF LIA)

∠ 900k+ check-sat calls

∠ solved queries within 300 seconds

MiniSat: 148, 997

CaDiCaL: 103, 843

Activation Literal Overhead Experiment

(push 1) . . . fresh literal ln
(assert true) . . . add clause (ln ∨ ⊤)

(check-sat) . . . assume ¬ln
(pop 1) . . . add clause (ln)

∠ Repeated N times in one benchmark

N MiniSat CaDiCaL Slowdown

10k 265ms 462ms 1.7×
25k 625ms 1.8s 2.8×
50k 1.2s 5.8s 4.8×
75k 1.8s 11.9s 6.6×

100k 2.5s 20.3s 8.1×

17



Conclusion

Summary

∠ non-incremental performance solid

∠ incremental performance still lagging behind

∠ IPASIR-UP integration

simple and flexible

captures all functionality required by cvc5

What’s Next?

∠ DRAT/LRAT proof integration (WIP)

∠ SAT solver tuning (currently default options)

∠ improve performance on quantified problems

∠ improve incremental performance

∠ IPASIR-UP: reduce callbacks, notifications

https://cvc5.github.io

18

https://cvc5.github.io


Scatter Plots QF S*, QF A*

Figure 1: QF S* (Logics with Strings) Figure 2: QF A* (Logics with Arrays)

19



Quanitfier-free and Quanitifed Logics

Figure 3: Quantifier-free Logics Figure 4: Quantified Logics

20



References

Fazekas, Katalin et al. (2023). “IPASIR-UP: User Propagators for CDCL”. In: 26th

International Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8,

2023, Alghero, Italy. Ed. by Meena Mahajan and Friedrich Slivovsky. Vol. 271. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:13. doi: 10.4230/LIPIcs.SAT.2023.8. url:

https://doi.org/10.4230/LIPIcs.SAT.2023.8.

21

https://doi.org/10.4230/LIPIcs.SAT.2023.8
https://doi.org/10.4230/LIPIcs.SAT.2023.8

	References

