
Hamiltonian Cycle Reconfiguration with Answer Set
Programming

Mutsunori Banbara (Nagoya University)

joint work with T. Hirate, K. Inoue, X. N. Lu, H. Nabeshima,
T. Schaub, T. Soh, and N. Tamura

This research has been presented at JELIA2023@Dresden.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 1 / 18



Combinatorial reconfiguration

Combinatorial reconfiguration is to study the structure and properties
(e.g., reachability) of solution spaces of combinatorial problems.

• Combinatorial Reconfiguration Problems (CRPs) are defined as
the task of deciding, for a given combinatorial problem and two of its
feasible solutions, whether one is reachable from another via a
sequence of adjacent feasible solutions.

• A great effort has been made to investigate the theoretical aspects of
CRPs over the last decade.

• For many NP-complete problems, their reconfigurations have been
shown to be PSPACE-complete:

• SAT reconfiguration [Gopalan+,’09]
• Graph coloring reconfiguration [Bonsma+,’09]
• Hamiltonian cycle reconfiguration [takaoka,’18], and many others.

However, little attention has been paid so far to its practical aspects.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 2 / 18



Combinatorial reconfiguration

Combinatorial reconfiguration is to study the structure and properties
(e.g., reachability) of solution spaces of combinatorial problems.

• Combinatorial Reconfiguration Problems (CRPs) are defined as
the task of deciding, for a given combinatorial problem and two of its
feasible solutions, whether one is reachable from another via a
sequence of adjacent feasible solutions.

• A great effort has been made to investigate the theoretical aspects of
CRPs over the last decade.

• For many NP-complete problems, their reconfigurations have been
shown to be PSPACE-complete:

• SAT reconfiguration [Gopalan+,’09]
• Graph coloring reconfiguration [Bonsma+,’09]
• Hamiltonian cycle reconfiguration [takaoka,’18], and many others.

However, little attention has been paid so far to its practical aspects.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 2 / 18



Hamiltonian Cycle Reconfiguration Problem (HCRP)

Question

How many transitions we need under the transition constraint 3-opt, which
enforces that exact 3 edges differ in each transition Xt ⇒ Xt+1?

start state goal state

1

2 3

4 5

6 ⇒ · · ·

1

2 3

4 5

6

· · · ⇒

1

2 3

4 5

6

X0 X?

• The goal state is reached from the start state with 2 transitions.

• Each state Xi satisfies the constraints of HCP.
• Each transition (⇒) satisfies the k-opt constraint, in this case k = 3.

• From X0 to X1, three edges 1–6, 2–6, and 4–5 are removed.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 3 / 18



Hamiltonian Cycle Reconfiguration Problem (HCRP)

Question

How many transitions we need under the transition constraint 3-opt, which
enforces that exact 3 edges differ in each transition Xt ⇒ Xt+1?

start state goal state

1

2 3

4 5

6 ⇒

· · ·

1

2 3

4 5

6

· · ·

⇒

1

2 3

4 5

6

X0 X1 X2

• The goal state is reached from the start state with 2 transitions.

• Each state Xi satisfies the constraints of HCP.
• Each transition (⇒) satisfies the k-opt constraint, in this case k = 3.

• From X0 to X1, three edges 1–6, 2–6, and 4–5 are removed.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 3 / 18



Answer Set Programming (ASP)

ASP is a declarative programming paradigm, combining a rich modeling
language with high performance solving capacities.

• ASP has its roots in
• deductive databases,
• logic programming with negation,
• knowledge representation and (nonmonotonic) reasoning,
• constraint solving (in particular, SAT).

• ASP is well suited for modeling combinatorial (optimization)
problems, and has been successfully applied in diverse areas of AI:

• Planning, Model checking,
• Timetabling, Systems Biology,
• Product Configuration,
• Robotics, and many more.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 4 / 18



Part 1: Main contributions for HCP

We develop two ASP encodings for undirected HCP solving.

• bidirectional encoding and acyclic encoding

• They are based on the idea of a SAT encoding [Soh+,JELIA’14] that
transforms undirected graph problems into directed ones by mapping
each edge u – v to one of its directional edges u → v and v → u.

• Our empirical analysis considers all 1,001 HCP instances, which are
publicly available from Flinders Hamiltonian Cycle Project (FHCP)

• The bidirectional encoding performs better than traditional encodings.
• We establish the competitiveness of our declarative approach by
contrasting it to

1 the award-winning solvers of the FHCP challenge,
2 the 1st place solver of XCSP competition,
3 a state-of-the-art SAT encoding for HCP solving [Heule,’21].

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 5 / 18



Cactus plot of HCP solving

• The bidirectional encoding solved the most, namely 934 instances.

• Followed by 928 of directed, 719 of undirected, and 483 of acyclic.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 6 / 18



The award-winning solvers of the FHCP challenge

Rank Team #Solved Method

1 INRIA, France 985 CPLEX
2 IBM, United Kingdom 614 SAT
3 King Saud University, Saudi Arabia 488 unknown
4 TU Darmstadt, Germany 464 unknown
5 Independent Researcher 385 unknown

Our declarative approach can be highly competitive in performance.

2http://fhcp.edu.au/fhcpcs
Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 7 / 18



The award-winning solvers of the FHCP challenge

Rank Team #Solved Method

1 INRIA, France 985 CPLEX
The bidirectional encoding (proposal) 934 ASP

2 IBM, United Kingdom 614 SAT
3 King Saud University, Saudi Arabia 488 unknown
4 TU Darmstadt, Germany 464 unknown
5 Independent Researcher 385 unknown

Our declarative approach can be highly competitive in performance.

2http://fhcp.edu.au/fhcpcs
Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 7 / 18



Comparison with other approaches

CPU times(s) on all HCP instances of the XCSP 2019 competition

Instances ASP PicatSAT SAT encoding
(proposal) (xcsp picat) [Heule,’21]

graph48 0.752 68.718 62.920
graph162 7.500 45.849 44.440
graph171 10.383 15.809 10.390
graph197 0.342 78.241 12.970
graph223 125.580 201.394 22.600
graph237 0.306 121.177 16.580
graph249 0.956 75.776 1.380
graph252 266.701 95.879 9.950
graph254 2.717 73.901 2.660
graph255 83.760 87.443 6.110
Average ratio 1.00 83.33 18.54

• Our bidirectional encoding is 83 times faster in average than
PicatSAT and 18 times faster than the SAT encoding.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 8 / 18



Part 2: Main contributions for HCRP

1 We extend our bidirectional encoding to solving HCRP, which is
subsequently solved by an ASP-based CRP solver recongo
[Yamada+,JELIA’23] 1

2 We develop three hint constraints to accelerate HCRP solving.

3 We create a new benchmark set of HCRP consisting of 948 HCRP
instances, in which 431 are reachable and 517 are unreachable.

• The extended encoding for HCRP solving can manage to determine
the reachability of 882 out of 948 instances.

• Furthermore, it is able to find shortest reconfiguration sequences of
length 28 in about 200 seconds in average.

1recongo ranked first in the shortest metric of the single-engine solvers track in the
most recent international competition on combinatorial reconfiguration.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 9 / 18



ASP-based approach to solving HCRP

HCRP
instance

Converter ASP facts

ASP encoding

(logic program)

recongo HCRP
solution

- - - -

• The resulting system reads an HCRP instance and converts it into
ASP facts in a standard way.

• In turn, these facts are combined with an ASP encoding (logic
program) for HCRP solving, which is subsequently solved by an
ASP-based CRP solver recongo [Yamada+,JELIA’23].

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 10 / 18



Logic programs

• A logic program P is a set of rules of the form

a︸︷︷︸
head

:- b1, . . . , bm, not bm+1, . . . , not bn︸ ︷︷ ︸
body

.

• where 0 ≤ m ≤ n, and a and all bi are atoms.
• :-, ,, not denote if, and, and default negation.
• intuitive reading: head must be true if body holds.

• Semantics given by stable models [Gelfond and Lifschitz, ’88],
informally, sets X of atoms such that

• X is a (classical) model of P and
• each atom in X is justified by some rule in P.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 11 / 18



ASP fact format of HCRP instances

HCRP instances are represented as ASP facts in a standard way.

start state goal state

1

2 3

4 5

6 ⇒ · · · ⇒

1

2 3

4 5

6

ASP fact format

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,6). edge(2,4). edge(2,6).

edge(3,5). edge(3,6). edge(4,5). edge(4,6). edge(5,6).

start(1,3). start(1,6). start(2,4). start(2,6). start(3,5). start(4,5).

goal(1,2). goal(1,6). goal(2,4). goal(3,5). goal(3,6). goal(4,5).

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 12 / 18



Full encoding for HCRP solving (proposal)

#program base.

:- not 1 { in(X,Y,0) ; in(Y,X,0) } 1, start(X,Y).

#program step(t).

{ in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

:- not 1 { in(X,_,t) } 1, node(X).

:- not 1 { in(_,X,t) } 1, node(X).

reached(s,t).

reached(Y,t) :- reached(X,t), in(X,Y,t).

:- not reached(X,t), node(X).

:- not X < Y, in(s,X,t), in(Y,s,t).

removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

:- not k { removed(_,_,t) } k, t>0.

#program check(t).

:- not 1 { in(X,Y,t) ; in(Y,X,t) } 1, goal(X,Y), query(t).

• The encoding consists of three parts: base, step(t), and check(t).

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 13 / 18



#program step(t)

1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_,t) } 1, node(X).

3 :- not 1 { in(_,X,t) } 1, node(X).

4
5 reached(s,t).

6 reached(Y,t) :- reached(X,t), in(X,Y,t).

7 :- not reached(X,t), node(X).

8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

10 :- not k { removed(_,_,t) } k, t>0.

• The constant t is a parameter representing each step in a transition
sequence.

• The auxiliary atom in(X,Y,t) is intended to represent that the
directed edge X→Y is in a Hamiltonian cycle at step t.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 14 / 18



#program step(t)

1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_,t) } 1, node(X).

3 :- not 1 { in(_,X,t) } 1, node(X).

4
5 reached(s,t).

6 reached(Y,t) :- reached(X,t), in(X,Y,t).

7 :- not reached(X,t), node(X).

8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

10 :- not k { removed(_,_,t) } k, t>0.

• Key idea: The rule in (1), for each edge(X,Y), introduces two
atoms in(X,Y,t) and in(Y,X,t) and enforces that at most one of
them is included in the Hamiltonian cycle.

• Although the at-most-one constraints are implied constraints, they
gain some performance improvement for HCP solving.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 14 / 18



#program step(t)

1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_,t) } 1, node(X).

3 :- not 1 { in(_,X,t) } 1, node(X).

4
5 reached(s,t).

6 reached(Y,t) :- reached(X,t), in(X,Y,t).

7 :- not reached(X,t), node(X).

8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

10 :- not k { removed(_,_,t) } k, t>0.

• (2)–(3): The degree constraints

• (5)–(7): The connectivity constraints

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 14 / 18



#program step(t)

1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_,t) } 1, node(X).

3 :- not 1 { in(_,X,t) } 1, node(X).

4
5 reached(s,t).

6 reached(Y,t) :- reached(X,t), in(X,Y,t).

7 :- not reached(X,t), node(X).

8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

10 :- not k { removed(_,_,t) } k, t>0.

• (9)–(10): The k-opt transition constraints

• (9): The auxiliary atom removed(X,Y,t) represents that the directed
edge X→Y is removed from a Hamiltonian cycle from step t-1 to t.

• (10): The rule enforces that exactly k edges in a Hamiltonian cycle
are removed at each step t.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 14 / 18



CPU time(s) of finding shortest transition sequences

Length #Instance CPU time(s)
average maximum minimum

28 4 200.725 290.375 130.622
14 10 148.754 209.782 119.712
8 10 141.659 293.491 74.568
7 10 2.304 2.652 1.994
6 44 26.723 67.564 8.663
4 110 14.200 83.747 0.889
3 64 6.048 25.496 1.100
2 124 1.343 2.207 0.274
1 47 0.669 2.036 0.434

• Our encoding was able to find the solutions of length 28 in about 200
seconds in average.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 15 / 18



The most relevant related fields

Combinatorial reconfiguration is

• to study the solution spaces of combinatorial problems,

• to decide whether there are sequences of feasible solutions that have
special properties, such as reachability, connectivity, and diameter:

Xs = X0 ⇒ X1 ⇒ X2 ⇒ · · · ⇒ Xℓ = Xg

where Xs and Xg are optional.

• In contrast, BMC [Biere,’09] is to study properties (e.g., safety and
liveness) of state transition systems and to decide whether there is no
sequence for which Xs is a start state and Xg is an error state
expressed by rich temporal logic.

• Classical planning [Kautz and Selman,’92] is to develop action plans
for more practical applications and to decide whether there are
sequences for which Xs is a start state and Xg is a goal state.

The relationship between those fields has not been well investigated.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 16 / 18



Conclusion

We presented an ASP-based approach to solving the Hamiltonian cycle
reconfiguration problem.

• All source code is available from:

https://github.com/banbaralab/hcr.

Future work
• Solving the diameter problems of Hamiltonian cycle reconfiguration.

• Applying our declarative approach to a wide range of combinatorial
reconfiguration problems.

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 17 / 18

https://github.com/banbaralab/hcr


Some softwares related to SAT, CP, and ASP

1 sugar : A SAT-based constraint solver Web

• Order encoding [CP 2006 DOI ]
• Pigeon hole clauses have drastically improved the performance of

alldifferent constraints.
• Fun-sCOP ranked second in Main CSP of XCSP Competition 2023.

2 teaspoon : an ASP-based timetabling solver
• 2023 ALP 10 year test-of-time award [TPLP 2013 DOI ]

3 catnap: an ASP-based test case generator for combinatorial
interaction testing [LPNMR 2017 DOI ]

4 aspcafe: an ASP-based solver for vehicle equipment specification
problems [PADL 2023 DOI ]

5 recongo: an ASP-based solver for combinatorial reconfiguration
problems [JELIA 2023 DOI ]

6 asp hcreconf: an ASP-based solver for Hamiltonian cycle
reconfiguration problem [JELIA 2023 DOI ]

Mutsunori Banbara Hamiltonian Cycle Reconfiguration with ASP 18 / 18

https://cspsat.gitlab.io/sugar/
http://doi.org/10.1007/11889205_42
http://doi.org/10.1017/S1471068413000495
http://doi.org/10.1007/978-3-319-61660-5_24
http://doi.org/10.1007/978-3-031-24841-2_15
http://doi.org/10.1007/978-3-031-43619-2_20
http://doi.org/10.1007/978-3-031-43619-2_19

