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Motivations
• LLMs demonstrate tremendous ability to understand programs
• Can perform various programming tasks

• Program synthesis from natural languages 
• Code repair (DeepRepair)

• Recent work suggests LLMs can also generate program invariants
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LLMs as invariant generators: example
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Can generate insightful loop 
invariants using operators not in the 
program



LLMs as invariant generators
• Compared with existing learning-based invariant generator

• Does not require domain-specific learning (though it might help)
• Can process programs of various forms
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Learning Loop Invariants for Program Verification, Si et al, NeurIPS, 2018
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Can we leverage LLMs’ code-understanding ability 
for automated program verification?



Challenges
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• GPT outputs can be messy and hard to automatically process
• Need prompt engineering

• LLM outputs are only suggestions and can certainly be wrong!
• Does not hold
• Does not help prove the proof goal
• Need formal verifiers to check correctness and implication



Marker-driven Prompting
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• To reliably get rid of the natural language
•  In-context learning + “don’t explain”

Off-by-one 

Attempt 1: 

Attempt 2: 



Marker-driven Prompting
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• To reliably obtain assertions at a precise location
• Introduce markers to the program



More failure modes
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• Invalid invariants (especially for multi-loop programs) 

Attempt 1:

Attempt 2:

Attempt 3:

Multiple prompting attempts
Repair the proposal



More failure modes

10

• Verifier can prove that the invariant imply the property but cannot prove 
the invariant

Constructing a chain of deduction

The new proof goal



Integrating the LLM with the Verifier
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LLMs can Program verifiers can

• Suggest proof goal
• Strengthen proof goal
• Repair proof goal

• Check implication
• Check proof goal
• Provide feedback (unknown, 

counter-example) 

Input: a program P, an assertion p
Output: Whether p holds



LLM-driven proof procedure as a calculus
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LLM-driven proof procedure as a calculus
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LLM-driven proof procedure as a calculus
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LLM-driven proof procedure as a calculus
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Algorithm 1
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LLM-driven proof procedure as a calculus
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LLM-driven proof procedure as a calculus
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Implementation
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• ~1500 lines of Python code
• LLM: GPT families 

• Use OpenAPI for prompting
• default: GPT 4

• Verifier: cbmc, UAutomizer and esbmc
• default: esbmc + UAutomizer 



Experiment: synthetic benchmarks
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• 133 loop Invariant generation benchmarks
• Goal: find a real invariant that implies the property
• Configurations

• Code2Inv: a learned loop-invariant generator
• esbmc: a k-induction-based C model checker
• esbmc + LLM: use LLM to propose invariants

Configuration Time limit Solved # attempted proposal

Code2Inv 1 hour 92 > 20

esbmc 10 minutes 68 0

esbmc + LLM 10 minutes 107 4.7



Experiment: competition benchmarks
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• 50 short C reachability benchmarks from SV-Comp 2023
• Unsolved by esbmc and Uautomizer in 20 minutes
• Configurations

• esbmc: second best non-portfolio solver
• UAutomizer: predicate-abstraction-based solver, overall winner of 

SV-Comp 2023
•  esbmc + UAutomizer + LLM

Configuration Time limit Solved

UAutomizer 20 minutes 0

esbmc 20 minutes 0

esbmc + Uautomizer + LLM 20 minutes 25



34

Thank you!



LLMs as invariant generators: example
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Can perform different types of 
reasoning
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