
Lemur: Framework for Integrating
LLMs in Automated Program

Verification
Andrew (Haoze) Wu, Nina Narodytska, Clark Barrett

NII Shonan Meeting on " The Art of SAT"

Motivations
• LLMs demonstrate tremendous ability to understand programs
• Can perform various programming tasks

• Program synthesis from natural languages
• Code repair (DeepRepair)

• Recent work suggests LLMs can also generate program invariants

2

LLMs as invariant generators: example

3

Can generate insightful loop
invariants using operators not in the
program

LLMs as invariant generators
• Compared with existing learning-based invariant generator

• Does not require domain-specific learning (though it might help)
• Can process programs of various forms

4

Learning Loop Invariants for Program Verification, Si et al, NeurIPS, 2018

5

Can we leverage LLMs’ code-understanding ability
for automated program verification?

Challenges

6

• GPT outputs can be messy and hard to automatically process
• Need prompt engineering

• LLM outputs are only suggestions and can certainly be wrong!
• Does not hold
• Does not help prove the proof goal
• Need formal verifiers to check correctness and implication

Marker-driven Prompting

7

• To reliably get rid of the natural language
• In-context learning + “don’t explain”

Off-by-one 

Attempt 1:

Attempt 2:

Marker-driven Prompting

8

• To reliably obtain assertions at a precise location
• Introduce markers to the program

More failure modes

9

• Invalid invariants (especially for multi-loop programs)

Attempt 1:

Attempt 2:

Attempt 3:

Multiple prompting attempts
Repair the proposal

More failure modes

10

• Verifier can prove that the invariant imply the property but cannot prove
the invariant

Constructing a chain of deduction

The new proof goal

Integrating the LLM with the Verifier

11

LLMs can Program verifiers can

• Suggest proof goal
• Strengthen proof goal
• Repair proof goal

• Check implication
• Check proof goal
• Provide feedback (unknown,

counter-example)

Input: a program P, an assertion p
Output: Whether p holds

LLM-driven proof procedure as a calculus

12

LLM-driven proof procedure as a calculus

13

LLM-driven proof procedure as a calculus

14

LLM-driven proof procedure as a calculus

15

LLM-driven proof procedure as a calculus

16

LLM-driven proof procedure as a calculus

17

Algorithm 1

18

LLM-driven proof procedure as a calculus

19

LLM-driven proof procedure as a calculus

20

LLM-driven proof procedure as a calculus

21

LLM-driven proof procedure as a calculus

22

LLM-driven proof procedure as a calculus

23

LLM-driven proof procedure as a calculus

24

LLM-driven proof procedure as a calculus

25

LLM-driven proof procedure as a calculus

26

LLM-driven proof procedure as a calculus

27

LLM-driven proof procedure as a calculus

28

LLM-driven proof procedure as a calculus

29

LLM-driven proof procedure as a calculus

30

Implementation

31

• ~1500 lines of Python code
• LLM: GPT families

• Use OpenAPI for prompting
• default: GPT 4

• Verifier: cbmc, UAutomizer and esbmc
• default: esbmc + UAutomizer

Experiment: synthetic benchmarks

32

• 133 loop Invariant generation benchmarks
• Goal: find a real invariant that implies the property
• Configurations

• Code2Inv: a learned loop-invariant generator
• esbmc: a k-induction-based C model checker
• esbmc + LLM: use LLM to propose invariants

Configuration Time limit Solved # attempted proposal

Code2Inv 1 hour 92 > 20

esbmc 10 minutes 68 0

esbmc + LLM 10 minutes 107 4.7

Experiment: competition benchmarks

33

• 50 short C reachability benchmarks from SV-Comp 2023
• Unsolved by esbmc and Uautomizer in 20 minutes
• Configurations

• esbmc: second best non-portfolio solver
• UAutomizer: predicate-abstraction-based solver, overall winner of

SV-Comp 2023
• esbmc + UAutomizer + LLM

Configuration Time limit Solved

UAutomizer 20 minutes 0

esbmc 20 minutes 0

esbmc + Uautomizer + LLM 20 minutes 25

34

Thank you!

LLMs as invariant generators: example

35

Can perform different types of
reasoning

	Lemur: Framework for Integrating LLMs in Automated Program Verification
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

