
Some Challenge Problems for Resolution
and One Also for AC0-Frege

Sam Buss

Shonan Village
October 2, 2023

Sam Buss Challenge Problems: Resolution and AC0-Frege



Motivation: Superpolynomial separations for AC0 proofs.

Original Motivations:

1 Frege proofs - Propositional proofs using Modus Ponens
Elegantly formalizable in the sequent calculus (LK).

2 Depth of a formula: Counts the alternation of ∧’s and ∨’s.
(Use negations only on variables.)

3 CNF formulas can be viewed as depth 1 formulas. (Or zero.)
Resolution refutations as depth zero LK refutations.

4 Open: Are there CNFs with short depth k + 1 Frege proofs,
but require exponential size depth k Frege proofs?

5 Best result so far: Quasipolynomial (2(log n)
O(1)

) separation
for the pigeonhole principle. [Krajicek-Impagliazzo’02].

This talk:

1 Three proposals. Two easy for resolution (!), one open.

2 Challenge problems. Proposed as challenges for SAT solvers.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Part I. st-Connectivity Tautologies

st-Connectivity (non-crossing) tautologies:
Two paths cannot cross diagonally without intersecting.

The red and blue paths must intersect somewhere

A width d grid graph. d is constant. n varies.

Propositional variables: re and be indicating e on red/blue path.
Edge e is an unordered pair {〈i , j〉, 〈i+1, j〉} or {〈i , j〉, 〈i , j+1〉}.
i ≤ n and j ≤ d .

[B’06], “Polynomial-size Frege and Resolution Proofs of st-Connectivity and Hex Tautologies

Sam Buss Challenge Problems: Resolution and AC0-Frege



Part I. st-Connectivity Tautologies

st-Connectivity (non-crossing) tautologies:
Two paths cannot cross diagonally without intersecting.

The red and blue paths must intersect somewhere

A width d grid graph. d is constant. n varies.

Propositional variables: re and be indicating e on red/blue path.
Edge e is an unordered pair {〈i , j〉, 〈i+1, j〉} or {〈i , j〉, 〈i , j+1〉}.
i ≤ n and j ≤ d .

[B’06], “Polynomial-size Frege and Resolution Proofs of st-Connectivity and Hex Tautologies

Sam Buss Challenge Problems: Resolution and AC0-Frege



Clauses for Grid Graph st-Connectivity: (GridStConn)

End points of red and blue paths (8 clauses):

OneOf ({re : 〈1, 1〉 ∈ e}), OneOf ({re : 〈n, d〉 ∈ e})
OneOf ({be : 〈1, d〉 ∈ e}), OneOf ({be : 〈n, 1〉 ∈ e})

Intermediate points v on paths (O(nd) clauses):

ZeroOrTwoOf ({re : v ∈ e}) and ZeroOrTwoOf ({be : v ∈ e})1

Paths are vertex disjoint (O(nd) clauses):

re ∨ bf , for e ∩ f 6= ∅.

Theorem: Fix d ∈ N. The st-Connectivity Decision Problem of
whether there is a path from s to t is many-one complete for
Πd -Boolean circuits. (Πd = “depth d”.)
[Barrington-Lu-Militerson-Skyun’98]

Nonetheless . . .

1OneOf is Xor (⊕). ZeroOrTwoOf is Xor .
Sam Buss Challenge Problems: Resolution and AC0-Frege



Theorem: GridStConn has resolution refutations of size
poly(n · 2d). These are polynomial size for d a constant.

Two ways of viewing the proof:

Induction style argument: Scan from left-to-right ruling out
appropriate patterns of crossing sequences of red and blue
paths.

Bounded Tree Width / Decision Tree argument:
Divide-and-conquer by querying the middle column of edges.
Then branch left or right depending on the crossing sequence
of red and blue edges. Recurse until reach a contradiction.

Challenge Problem: Do SAT solvers efficiently find proofs of
GridStConn for d constant? What if d is allowed to vary?

Theorem: When d = n, the PHP tautologies are reducible to
GridStConn. Thus resolution refutations must be exponential size.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Part II. AC0 Equivalence and Implication Tautologies

Boolean formula of depth d and constant unbounded fanin f :

Alternating ∨’s and ∧’s, with d = 4 and f = 2.

For fixed d , evaluating the truth of a formula is Σd complete.

An obviously true Boolean formula:

The obviously true formula.
The first inputs to ∨’s evaluate to true (1) (as needed).
Any path that always takes the first input from an ∨ reaches “1”.
The x’s are “Don’t Care” values.

An obviously false Boolean formula:

The obviously false formula.
The first inputs to ∧’s evaluate to false (0) (as needed).
Any path that always takes the first input from an ∧ reaches “0”.
The y’s are “Don’t Care” values.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Part II. AC0 Equivalence and Implication Tautologies

Boolean formula of depth d and constant unbounded fanin f :

Alternating ∨’s and ∧’s, with d = 4 and f = 2.

For fixed d , evaluating the truth of a formula is Σd complete.

An obviously true Boolean formula:

The obviously true formula.
The first inputs to ∨’s evaluate to true (1) (as needed).
Any path that always takes the first input from an ∨ reaches “1”.
The x’s are “Don’t Care” values.

An obviously false Boolean formula:

The obviously false formula.
The first inputs to ∧’s evaluate to false (0) (as needed).
Any path that always takes the first input from an ∧ reaches “0”.
The y’s are “Don’t Care” values.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Part II. AC0 Equivalence and Implication Tautologies

Boolean formula of depth d and constant unbounded fanin f :

Alternating ∨’s and ∧’s, with d = 4 and f = 2.

For fixed d , evaluating the truth of a formula is Σd complete.

An obviously true Boolean formula:

The obviously true formula.
The first inputs to ∨’s evaluate to true (1) (as needed).
Any path that always takes the first input from an ∨ reaches “1”.
The x’s are “Don’t Care” values.

An obviously false Boolean formula:

The obviously false formula.
The first inputs to ∧’s evaluate to false (0) (as needed).
Any path that always takes the first input from an ∧ reaches “0”.
The y’s are “Don’t Care” values.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Swaps as primitive equivalence steps

Swapping the order of inputs does not change truth value:

A swap π of one pair of inputs to one gate is a primitive swap.
Here π(i) = i for i ≤ 8, π(9 + j) = 13 + j and π(13 + j) = 9 + j .

Sam Buss Challenge Problems: Resolution and AC0-Frege



AC0 Formula Equivalence Tautologies (FmlaEquiv)

Conceptually: A sequence of n formulas, each equivalent to the
next, starting with a true formula and ending with a false formula.
The formulas have depth d and fanin f . 2

F1 is obviously true.

Fn is obviously false.

Each Fi+1 is obtained from Fi by a primitive swap.

Propositional Variables:

xi ,` is the Boolean value of the `-th input to Fi .

si ,p means Fi+1 is obtained from Fi by primitive swap πp.
p encodes a gate and two of its inputs.

` ≤ f d and p ≤ (f d − 1)/(d − 1) and i ≤ n (or < n for si ,p).
2FmlaEquiv is based on a suggestion of Krajicek.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Clauses of FmlaEquiv: Parameters d , f , n.

F1 is obviously true. Unit clauses for f d/2 many inputs of F1
are set to 1.

Fn is obviously false. Unit clauses for f d/2 many inputs of Fn
are set to 0.

Don’t care values of F1 and Fn are set to 0 and to 1,
respectively. (Only need one set of these.)

One primitive swap for each i < n:∨
p si ,p and si ,p ∨ si ,p′ (for p 6= p′)

Primitive swap preserves truth & falsity. If si ,p is true,
then xi ,` ↔ xi+1,πp(`).

FmlaEquiv is a CNF formula and is clearly unsatisfiable.

The straightforward proof of unsatisfiability involves showing,
successively by induction on i , that Fi evaluates to true, and
reaching a contradiction at Fn.
However, expressing truth requires depth d formulas.
Thus this proof cannot be carried out in resolution.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Theorem: [B-Ramyaa’18]

FmlaEquiv has polynomial size resolution refutations.

The proof is tricky, but the idea is that the extra “Don’t Care”
variables contain enough information to let resolution express the
condition that the formula Fi is a permuted (via multiple swaps)
version of F1.

Challenge Problem for resolution: Do SAT solvers refute
FmlaEquiv efficiently?

Sam Buss Challenge Problems: Resolution and AC0-Frege



AC0 Formula Implication Tautologies (FmlaImply)

Conceptually: A sequence of n formulas, each implying the next,
starting with a true formula and ending with a false formula.
The formulas have depth d and fanin f .

F1 is obviously true.

Fn is obviously false.

Each Fi+1 is obtained from Fi by a primitive swap,

Plus, possibly changing some 0 inputs to 1’s.

So Fi → Fi+1 is assumed, not Fi ↔ Fi+1.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Clauses of FmlaImply: Parameters d , f , n.

F1 is obviously true. Unit clauses for f d/2 many inputs of F1
are set to 0.

Fn is obviously true. Unit clauses for f d/2 many inputs of Fn
are set to 1.

Don’t care values are no longer important.

One primitive swap for each i < n:∨
p si ,p and si ,p ∨ si ,p′ (for p 6= p′)

Primitive swap preserves truth implicationally. If si ,p is
true, then xi ,` → xi+1,πp(`).

Sam Buss Challenge Problems: Resolution and AC0-Frege



Open Question: Does resolution have polynomial size refutations
of FmlaImply?

Challenge Problem: How do SAT solvers perform on FmlaImply?

Thm: FmlaImply has poly-size, tree-like LK, depth d − 1 refutations.

Open Question: Does FmlaImply give exponential separations for
(tree-like LK) depth d − 2 versus depth d − 1 proof size?
(Note that these systems are much stronger than resolution.)

If yes, it gives similar separations for dag-like LK refutations.

Sam Buss Challenge Problems: Resolution and AC0-Frege



Thank you!

Sam Buss Challenge Problems: Resolution and AC0-Frege


