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Introduction:  Shin-ichi Minato

• Prof. of Kyoto University (from 2018)
• Worked for Hokkaido University, Sapporo, from 2004 to 2018
• Worked for NTT Labs. from 1990 to 2004.

• Main research area: 
• 1990’s: VLSI CAD (logic design and verification)

• Proposed “Zero-suppressed BDD” (ZDD) at DAC 1993
• 2000’s: Large-scale discrete structure manipulation

for data mining, graph algorithms, knowledge compilation, etc.
• Proposed fast data mining “LCM over ZDDs” at PAKDD 2008
• ZDD-based methods for various graph problems in Knuth-Book
• Proposed “Permutation DD” (πDD) at SAT-2011
• Proposed fast statistical testing “LAMP 2.0” at ECML/PKDD 2014

• 2020～now: Research director of
“AFSA (Algorithmic Foundation for Social Advancement) project”

• Five years, 40 PI researchers, nation-wide research project
• My current interest: Integration of 

“enumeration, optimization, and satisfiability” techniques
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Animation Movie on graph counting [2012]
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- Shows strong power of 
combinatorial explosion, and 
importance of algorithmic techniques.

- 3 million views in 10 years on YouTube.



Open software: “Graphillion.org”

• Toolbox for ZDD-based graph enumeration.
• Easy interface using Python graph library.
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International Competition on Graph Counting Algorithm (ICGCA)
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https://afsa.jp/icgca



International Competition on Graph Counting Algorithm (ICGCA)
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Sep. 7, 2023 @ Osaka, Japan
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“Combinatorial Enumeration and Ranking”



Motivating Problem (Exercise in Knuth-Book) 
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• Let us enumerate all Hamiltonian paths from WA to ME.
• Efficient DP algorithm (Frontier-based method) is shown.

• Generated ZDD size: 3,616 nodes
• All Hamiltonian paths: 6,876,928 ways
• Computation time: 0.03 sec.

|V|=48, |E|=105 Each edge has a mileage
between state capitals.



After ZDD construction, is it easy or not easy?

2023.10.04 10

• Easy tasks by using ZDDs:(Linear-time for ZDD size)
• Counting number of solutions. (6,876,928 ways)
• Finding shortest/longest paths. (11,698 / 18,040 miles)
• Computing the average length of all feasible solutions.

• Seems easy but still not easy tasks:
• Counting all paths less than the average length.
• Finding the median of all feasible solutions.
• Show ranking of a given solution.
• Constructing ZDDs for all paths no more than 

10% increase from the shortest path.
• Constructing ZDDs enumerating the top 5% solutions.



More difficult variation of the problem

112023.10.04

• Let us enumerate all “self-avoiding tours” 
visiting 24 (a half number) of the 48 States. 

• ZDD size: 26,798 nodes,   Computation time: 0.09 sec.
• Total solutions: 398,924,116 ways.

• Let us cover the total population as many as possible.



Population data of 48 States [2020 US Census]
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Population data of 48 States [2020 US Census]
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The most populated 24 states self-avoiding tour
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Total population:          247,542,080
(Exact half population: 164,285,537)



The most populated 24 states self-avoiding tour
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Total population:          247,542,080
(Exact half population: 164,285,537)



The least populated 24 states self-avoiding tour
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Total population:           85,077,802
(Exact half population: 164,285,537)



Distribution of the solutions in terms of population
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Exact half population

Median

Our recent ZDD-based algorithm shows 
the distribution of 398,924,116 feasible solutions.



Why easy and not easy?
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• Easy tasks by using ZDDs: (Linear-time for ZDD size)
• Counting number of solutions. (6,876,928 ways)
• Finding shortest/longest paths. (11,698 / 18,040 miles)
• Computing the average length of all feasible solutions.

• Seems easy but still not easy tasks:
• Counting all paths less than the average length.
• Finding the median of all feasible solutions.
• Show ranking of a given solution.
• Constructing ZDDs for all paths no more than 

10% increase from the shortest path.
• Constructing ZDDs enumerating the top 5% solutions.
Because ZDDs are indexed in a lexicographical order, 
but not indexed in a cost-oriented order. 



“ZDD-based histogram” for cost-oriented indexing
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• If we can efficiently generate ZDDs of cost-bounded 
solutions from the ZDD of all feasible solutions, 
then we may construct a “ZDD-based histogram”.

• This is a kind of “cost-oriented index” for all feasible 
solutions of a combinatorial optimization problem.

f [c <100]

……

f f [c <200]
f [c <300]

f [c <400]
f [c <500]



Generating ZDDs for cost-bounded solutions
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• We can very efficiently construct ZDD f of all Hamiltonian paths 
(without costs) by using Knuth’s (frontier-based) algorithm.
( for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply 
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

f

g(PB-constraint)
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Generating ZDDs for cost-bounded solutions

2023.10.04 21

• We can very efficiently construct ZDD f of all Hamiltonian paths 
(without costs) by using Knuth’s (frontier-based) algorithm.
( for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply 
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

ZDD

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

Intersection

It seems easy but ...

f

g

h = f [cost < b]

(PB-constraint)



Generating ZDDs for cost-bounded solutions
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• We can very efficiently construct ZDD f of all Hamiltonian paths 
(without costs) by using Knuth’s (frontier-based) algorithm.
( for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply 
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

f

g(PB-constraint)

Essentially same as 
the classical DP-table

This ZDD
may grow exponentially!
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Classical DP Method for PB constraint problem
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• A classical method with dynamic programming using 
a DP table to store the subtotal costs for each decision.

• Pseudo-polynomial time (with the total cost values)
• Table becomes too large

in practical applications:
• Mileage
• Financial incomes
• Populations

• For the US map 
with “mileage cost”, 
the total cost value 
becomes 35,461 (miles), 
and the DP table may have 3,000,000 cells. 

• Too difficult for the problem with “population cost”.

Subtotal costs

# 
ite

m



Direct ZDD construction without ZDD g

 Recursively performs a simple backtracking on the input 
ZDD f in a depth-first manner, and output a ZDD h.
 On each recursive step, the problem (f, b) is divided into 

the two sub-problems (f0, b) and (f1, b-cost(x)).
 When reaching 1-terminal with the cost bound b ≧ 0, 

then we accept it and return 1-terminal. 
Otherwise, we reject it  and return 0-terminal.
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ZDD ZDD

f h = f [cost < b] 

Cost bound b



Limitation of conventional memoizing

 Conventional memoizing is not very effective for the 
cost-bounded cases, because the subtotal cost of used 
items may be different from one at the first visit.
 In such cases, the result may not be the same, and thus

we should check a pair of (f, b) as a key to the memo.
 When cost values are large 

and have wide distributions, 
the probability of memo-hitting 
is significantly low, and 
this method is not very effective.

 Essentially same as using
the classical DP table.
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Key idea of our proposed method

 If we revisit a same ZDD node f with a cost bound b’ different from 
the first bound b, the result ZDD node h
may not be the same.

 but if b and b’ are very close, the result h
becomes the same with a high possibility.

 More formally, the result h must be the same 
if there is no solution with a cost between 
b and b’.
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accept_worst(f, b) :   the worst (highest) cost of an accepted solution in h.
reject_best(f, b)     :   the best (lowest) cost of one rejected for h but in f.

accept_worst(f, b) ≦ b’ <  reject_best(f, b) 
We can guarantee the same result h for b and b’  if and only if :



Interval-memoized backtracking

 For each ZDD node f, we prepare a numerical-ordered 
memory to store the intervals of the two cost bounds.
 accept_worst  black dot ●,   reject_best  white dot ○.
 if we revisit f with b in the interval [●, ○) , then we avoid new 

recursive call and immediately return the result at the first visit. 
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We can implement it as numerical-ordered
memories using self-balancing binary 
search trees, available in std::map of GNU 
C++ standard library.  O(log m) time for 
each read/write in average.

Another problem: how to know the interval (accept_worst, reject_best) ?
We can easily compute it in the recursive process.
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Algorithm with interval-memoizing

We can compute aw, rb in a constant steps
from the two children’s results aw0, rb0, and aw1, rb1

If b in the interval [aw, rb),
reuse the last result h.

For b = -∞ : it returns empty set, and reject_best shows the min cost.
For b = +∞ : it returns f , and accept_worst shows the max cost.

Memoize the computation result h.

Returns not only the ZDD 
but also the interval [aw, rb)

 Our algorithm integrates the two classical methods: BB and DP.



Hamiltonian paths for US mileage map
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 Knuth’s US 48 state adjacent graph (from ME to WA)
 Exactly enumerated millions of lower-cost solutions in 0.1 sec.
 10 to 600 times faster than using conventional memoizing.
 100 times faster than existing ASP solver “clingo” [Gebster2012].
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Hamiltonian paths for 10x10 grid graph

 10×10 grid graph with uniform-random cost in [1000, 2000).
 Exactly enumerated quadrillions of lower-cost solutions in an hour.
 Extracted top-10Tera solutions from 1.4Peta feasible ones.
 Existing ASP solver “clingo” cannot work.
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Self-avoiding 24 States tour to cover population

312023.10.04

Our ZDD-based algorithm could get the distribution of 
all 398,924,116 feasible solutions.



Distribution of the solutions in terms of population
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Exact half population

Median



Future direction of my interests
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SAT-based solvers

ILP-based solvers BDD/ZDD-compilation

(Prove or disprove)

(Find one optimal solution) (Enumerate all solutions)
Highly state-of-the-art tools

CPLEX / Gurobi
Model counting &

Probability computing

#SAT
PB-SAT CSP ASPsolver
MaxSAT

Top-k
search

Integration of
“Enumeration, Optimization, and Satisfiability” techniques.
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