The Art of Counting Graphs

Shin-ichi Minato

Kyoto University

Introduction: Shin-ichi Minato

- Prof. of Kyoto University (from 2018)
- Worked for Hokkaido University, Sapporo,
- Worked for NTT Labs. from 1990 to 2004.

- Main research area:

- 1990's: VLSI CAD (logic design and verification)
- Proposed "Zero-suppressed BDD" (ZDD) at DAC 1993
- 2000's: Large-scale discrete structure manipulation for data mining, graph algorithms, knowledge compilation, etc.
- Proposed fast data mining "LCM over ZDDs" at PAKDD 2008
- ZDD-based methods for various graph problems in Knuth-Book
- Proposed "Permutation DD" ($\pi D D$) at SAT-2011
- Proposed fast statistical testing "LAMP 2.0" at ECML/PKDD 2014
- 2020~now: Research director of
"AFSA (Algorithmic Foundation for Social Advancement) project"
- Five years, 40 PI researchers, nation-wide research project
- My current interest: Integration of
"enumeration, optimization, and satisfiability" techniques

Animation Movie on graph counting [2012]

- Shows strong power of combinatorial explosion, and importance of algorithmic techniques.
- 3 million views in 10 years on YouTube.

Open software: "Graphillion.org"

- Toolbox for ZDD-based graph enumeration.
 - Easy interface using Python graph library.


```
Fast, lightweight graphset operation library

\section*{Merge branch 'v0.95rc'}
```

(3) takemaru authored 11 days ago
latest commit fb23d768£7

```
```cmake
initial commit
9 months ago
Graphs
.04
E. doc
make figures smaller
6 months ago
\& Network
```


## International Competition on Graph Counting Algorithm (ICGCA)



## Home

What's new
Overview
Problem and benchmarks

Input
Output
Number of benchmarks
Example benchmarks
Example codes

## Rules

## Contestants

Evaluation metrics

## What's new

August 29, 2023

- The program for the ICGCA symposium, where the results will be unveiled, is available here.

July 18, 2023

- The GNU multi-precision library (libgmp-dev) and Xlib (libx11-dev) will be available on the evaluation environment upon requests from some contestants.

July 13, 2023

- The wrong description for the evaluation script has been fixed; the directory path was written as /home/\{user\}/submission/, but the correct one is /home/icgca/\{user\}/submission/.

July 12, 2023

- The evaluation script had a bug on multi-threading and has been fixed, so please re-download it from here.

July 07, 2023

International Competition on Graph Counting Algorithm (ICGCA)
AFSA


# The Art of Counting Graphs 

## Shin-ichi Minato

Kyoto University

## The Art of Counting Graphs:

## "Combinatorial Enumeration and Ranking"

Shin-ichi Minato
Kyoto University

## Motivating Problem (Exercise in Knuth-Book)



- Let us enumerate all Hamiltonian paths from WA to ME.
- Efficient DP algorithm (Frontier-based method) is shown.
- Generated ZDD size: 3,616 nodes
- All Hamiltonian paths: 6,876,928 ways
- Computation time: 0.03 sec .
- Easy tasks by using ZDDs:(Linear-time for ZDD size)
- Counting number of solutions. (6,876,928 ways)
- Finding shortest/longest paths. (11,698 / 18,040 miles)
- Computing the average length of all feasible solutions.
- Seems easy but still not easy tasks:
- Counting all paths less than the average length.
- Finding the median of all feasible solutions.
- Show ranking of a given solution.
- Constructing ZDDs for all paths no more than 10\% increase from the shortest path.
- Constructing ZDDs enumerating the top 5\% solutions.


## More difficult variation of the problem

- Let us enumerate all "self-avoiding tours" visiting 24 (a half number) of the 48 States.
- ZDD size: 26,798 nodes, Computation time: 0.09 sec .
- Total solutions: 398,924,116 ways.
- Let us cover the total population as many as possible.



## Population data of 48 States [2020 US Census]

State	Code	Population
Alabama	AL	$5,024,279$
Arizona	AZ	$7,151,502$
Arkansas	AR	$3,011,524$
California	CA	$39,538,223$
Colorado	CO	$5,773,714$
Connecticut	CT	$3,605,944$
Delaware	DE	989,948
Florida	FL	$21,538,187$
Georgia	GA	$10,711,908$
Idaho	ID	$1,839,106$
Illinois	IL	$12,812,508$
Indiana	IN	$6,785,528$
Iowa	IA	$3,190,369$
Kansas	KS	$2,937,880$
Kentucky	KY	$4,505,836$
Louisiana	LA	$4,657,757$
Maine	ME	$1,362,359$
Maryland	MD	$6,177,224$
Massachusetts	MA	$7,029,917$
Michigan	MI	$10,077,331$
Minnesota	MN	$5,706,494$
Mississippi	MS	$2,961,279$
Missouri	MO	$6,154,913$
Montana	MT	$1,084,225$


Nebraska	NE	$1,961,504$
Nevada	NV	$3,104,614$
New Hampshire	NH	$1,377,529$
New Jersey	NJ	$9,288,994$
New Mexico	NM	$2,117,522$
New York	NY	$20,201,249$
North Carolina	NC	$10,439,388$
North Dakota	ND	779,094
Ohio	OH	$11,799,448$
Oklahoma	OK	$3,959,353$
Oregon	OR	$4,237,256$
Pennsylvania	PA	$13,002,700$
Rhode Island	RI	$1,097,379$
South Carolina	SC	$5,118,425$
South Dakota	SD	886,667
Tennessee	TN	$6,910,840$
Texas	TX	$29,145,505$
Utah	UT	$3,271,616$
Vermont	VT	643,077
Virginia	VA	$8,631,393$
Washington	WA	$7,705,281$
West Virginia	WV	$1,793,716$
Wisconsin	WI	$5,893,718$
Wyoming	WY	576,851
Total		$328,571,074$

## Population data of 48 States [2020 US Census]

State	Code	Population
Alabama	AL	$5,024,279$
Arizona	AZ	$7,151,502$
Arkansas	AB	$3,011,524$
California	CA	$39,538,223$
Colorado	CO	$5,773,714$
Connecticut	CT	$3,605,944$
Delaware	DE	989,948
Florida	FL	$21,538,187$
Georgia	GA	$10,711,908$
Idaho	ID	$1,839,106$
Illinois	IL	$12,812,508$
Indiana	IN	$6,785,528$
Iowa	IA	$3,190,369$
Kansas	KS	$2,937,880$
Kentucky	KY	$4,505,836$
Louisiana	LA	$4,657,757$
Maine	ME	$1,362,359$
Maryland	MD	$6,177,224$
Massachusetts	MA	$7,029,917$
Michigan	MI	$10,077,331$
Minnesota	MN	$5,706,494$
Mississippi	MS	$2,961,279$
Missouri	MO	$6,154,913$
Montana	MT	$1,084,225$


Nebraska	NE	$1,961,504$
Nevada	NV	$3,104,614$
New Hampshire	NH	$1,377,529$
New Jersey	NJ	$9,288,994$
New Mexico	NM	$2,117,522$
New York	NY	$20,201,249$
North Carolina	NC	$10,439,388$
North Dakota	ND	779,094
Ohio	OH	$11,799,448$
Oklahoma	OK	$3,959,353$
Oregon	OR	$4,237,256$
Pennsylvania	PA	$13,002,700$
Rhode Island	RI	$1,097,379$
South Carolina	SC	$5,118,425$
South Dakota	SD	886,667
Tennessee	TN	$6,910,840$
Texas	TX	$29,145,505$
Utah	UT	$3,271,616$
Vermont	VT	643,077
Virginia	VA	$8,631,393$
Washington	WA	$7,705,281$
West Virginia	WV	$1,793,716$
Wisconsin	WI	$5,893,718$
Wyoming	WY	576,851
Total		$328,571,074$





## Distribution of the solutions in terms of population

Our recent ZDD-based algorithm shows
the distribution of $398,924,116$ feasible solutions.


## Why easy and not easy?

- Easy tasks by using ZDDs: (Linear-time for ZDD size)
- Counting number of solutions. (6,876,928 ways)
- Finding shortest/longest paths. (11,698 / 18,040 miles)
- Computing the average length of all feasible solutions.
- Seems easy but still not easy tasks:
- Counting all paths less than the average length.
- Finding the median of all feasible solutions.
- Show ranking of a given solution.
- Constructing ZDDs for all paths no more than $\mathbf{1 0 \%}$ increase from the shortest path.
- Constructing ZDDs enumerating the top 5\% solutions.

Because ZDDs are indexed in a lexicographical order, but not indexed in a cost-oriented order.

- If we can efficiently generate ZDDs of cost-bounded solutions from the ZDD of all feasible solutions, then we may construct a "ZDD-based histogram".
- This is a kind of "cost-oriented index" for all feasible solutions of a combinatorial optimization problem.



## Generating ZDDs for cost-bounded solutions

- We can very efficiently construct ZDD $f$ of all Hamiltonian paths (without costs) by using Knuth's (frontier-based) algorithm. ( $\rightarrow$ for the US map instance, only 0.03 sec to generate ZDD)
- We may construct another ZDD $g$ for the cost constraint, and apply intersection between the two ZDDs to generate output ZDD $h$.

(PB-constraint)

$$
\sum c_{i} x_{i} \leq b
$$



## Generating ZDDs for cost-bounded solutions

- We can very efficiently construct ZDD $f$ of all Hamiltonian paths (without costs) by using Knuth's (frontier-based) algorithm. ( $\rightarrow$ for the US map instance, only 0.03 sec to generate ZDD)
- We may construct another ZDD $g$ for the cost constraint, and apply intersection between the two ZDDs to generate output ZDD $h$.

It seems easy but ...

(PB-constraint)

$$
\sum c_{i} x_{i} \leqq b
$$

Cost-bounded


## Generating ZDDs for cost-bounded solutions

- We can very efficiently construct ZDD $f$ of all Hamiltonian paths (without costs) by using Knuth's (frontier-based) algorithm. ( $\rightarrow$ for the US map instance, only 0.03 sec to generate ZDD)
- We may construct another ZDD $g$ for the cost constraint, and apply intersection between the two ZDDs to generate output ZDD $h$.

(PB-constraint)

$$
\sum c_{i} x_{i} \leq b
$$



## Essentially same as

 the classical DP-tableCost-bounded combinations

may grow exponentially!

- A classical method with dynamic programming using a DP table to store the subtotal costs for each decision.
- Pseudo-polynomial time (with the total cost values)
- Table becomes too large in practical applications:
- Mileage
- Financial incomes
- Populations
- For the US map with "mileage cost", the total cost value

Subtotal costs
 becomes 35,461 (miles), and the DP table may have $3,000,000$ cells.

- Too difficult for the problem with "population cost".


## Direct ZDD construction without ZDD $g$

- Recursively performs a simple backtracking on the input ZDD $f$ in a depth-first manner, and output a ZDD $h$.
- On each recursive step, the problem $(f, b)$ is divided into the two sub-problems $\left(f_{0}, b\right)$ and $\left(f_{1}, b-\operatorname{cost}(x)\right)$.
- When reaching 1-terminal with the cost bound $b \geqq 0$, then we accept it and return 1-terminal. Otherwise, we reject it and return 0-terminal.


$$
h=f[\text { cost }<b]
$$



## Limitation of conventional memoizing

- Conventional memoizing is not very effective for the cost-bounded cases, because the subtotal cost of used items may be different from one at the first visit.
- In such cases, the result may not be the same, and thus we should check a pair of $(f, b)$ as a key to the memo.
- When cost values are large and have wide distributions, the probability of memo-hitting is significantly low, and this method is not very effective.
- Essentially same as using the classical DP table.



## Key idea of our proposed method

- If we revisit a same ZDD node $f$ with a cost bound $b$ ' different from the first bound $b$, the result ZDD node $h$ may not be the same.
- but if $b$ and $b$ ' are very close, the result $h$ becomes the same with a high possibility.
- More formally, the result $h$ must be the same if there is no solution with a cost between $b$ and $b$ '.

$\boldsymbol{a c c e p t}$ _worst $(f, \boldsymbol{b})$ : the worst (highest) cost of an accepted solution in $\boldsymbol{h}$. reject_best $(f, \boldsymbol{b})$ : the best (lowest) cost of one rejected for $\boldsymbol{h}$ but in $\boldsymbol{f}$.

We can guarantee the same result $\boldsymbol{h}$ for $\boldsymbol{b}$ and $\boldsymbol{b}^{\prime}$ if and only if :

$$
\text { accept_worst }(f, b) \leqq b^{\prime}<\text { reject_best }(f, b)
$$

## Interval-memoized backtracking

- For each ZDD node $\boldsymbol{f}$, we prepare a numerical-ordered memory to store the intervals of the two cost bounds.
- accept_worst $\rightarrow$ black dot $\bigcirc$, reject_best $\rightarrow$ white dot $\bigcirc$.
- if we revisit $f$ with $\boldsymbol{b}$ in the interval [ $(\bigcirc)$, then we avoid new recursive call and immediately return the result at the first visit.


We can implement it as numerical-ordered memories using self-balancing binary search trees, available in std::map of GNU C++ standard library. $\rightarrow O(\log m)$ time for each read/write in average.
Another problem: how to know the interval (accept_worst, reject_best)? $\rightarrow$ We can easily compute it in the recursive process.

## Algorithm with interval-memoizing

```
-BacktrackIntMemo(ZDD f, int b)
// returns a triple (ZDD h,int accept_worst,reject_best)
{
 if f=[0] return ([0], -\infty, \infty)
 if f=[1] then
 if b\geq0 return ([1], 0, \infty)
 else return ([0], -\infty,0)
 (h,aw,rb)\leftarrow\operatorname{memo[f,b]; if exists return (h,aw,rb)}
If b}\mathrm{ in the interval [aw,rb),
 // f consists of (}x,\mp@subsup{f}{0}{\prime},\mp@subsup{f}{1}{}
 (ho,awo,rbo)}\leftarrow\mathrm{ - BacktrackIntMemo(}\mp@subsup{f}{0}{},b
 (h,aw
 h\leftarrow\mathbf{ZDD}(x,\mp@subsup{h}{0}{},\mp@subsup{h}{1}{})// applying ZDD reduction
 aw\leftarrow\operatorname{max}(a\mp@subsup{w}{0}{},a\mp@subsup{w}{1}{}+\operatorname{cost}(x))\quad\mathrm{ We can compute aw,rb}\mathrm{ in a constant steps}
 rb}\leftarrow\boldsymbol{min}(r\mp@subsup{b}{0}{\prime},r\mp@subsup{b}{1}{}+\operatorname{cost}(x)
 memo[f,[aw,rb)]\leftarrowh
 return (h,aw,rb)
}
Memoize the computation result \(\boldsymbol{h}\).
```

For $\boldsymbol{b}=-\infty$ : it returns empty set, and reject_best shows the min cost. For $\boldsymbol{b}=+\infty$ : it returns $\boldsymbol{f}$, and accept_worst shows the max cost.
$\rightarrow$ Our algorithm integrates the two classical methods: BB and DP.

## Hamiltonian paths for US mileage map

- Knuth's US 48 state adjacent graph (from ME to WA)
- Exactly enumerated millions of lower-cost solutions in 0.1 sec .
- 10 to 600 times faster than using conventional memoizing.
- 100 times faster than existing ASP solver "clingo" [Gebster2012].

Contiguous US map graph $(|V|: 48,|E|: 105)$ with mileage costs

$\begin{array}{\|c\|} \hline \text { cost bound } \\ \text { (ratio) } \end{array}$	proposed method (IntervalMemo)			$\begin{array}{\|c} \hline \text { (NaiveMemo) } \\ \hline \text { time }(\mathrm{sec}) \end{array}$	$\begin{array}{\|c\|} \hline \text { clingo } \\ \hline \text { time(sec) } \end{array}$
	\#solutions	ZDD	time(sec)		
11,698 ( $+0 \%$ )	1	47	0.029	1.083	10.784
11,814 ( $+1 \%$ )	8	99	0.029	1.077	5.243
11,931 ( $+2 \%$ )	28	152	0.033	1.086	7.028
12,282 ( $+5 \%$ )	388	1,001	0.031	1.115	8.783
12,867 ( $+10 \%$ )	16,180	9,679	0.035	1.179	12.080
14,037 ( $+20 \%$ )	939,209	72,808	0.098	1.431	26.276
15,207 ( $+30 \%$ )	4,525,541	99,759	0.126	1.719	40.463
16,377 ( $+40 \%$ )	6,702,964	38,548	0.055	1.901	39.015
17,547 ( $+50 \%$ )	6,876,526	4,934	0.029	1.828	36.879
18,040 ( $+54 \%$ )	(*) $6,876,928$	3,616	0.029	1.836	37.031

(*): contains all feasible solutions. $\left(S_{f}=S_{h}\right)$

## Hamiltonian paths for $10 \times 10$ grid graph

- $10 \times 10$ grid graph with uniform-random cost in [1000, 2000).
- Exactly enumerated quadrillions of lower-cost solutions in an hour.
- Extracted top-10Tera solutions from 1.4Peta feasible ones.
$10 \times 10$ grid graph $(V: 121, E: 220)$

bound $b$ (ratio)	\#solutions	ZDD $h \mid$	proposed method	
			time(sec)	\#calls
$170,010(1.00)$	1	120	0.588	997,797
$171,710(1.01)$	416,589	276,180	0.896	$1,641,231$
$173,410(1.02)$	$270,414,340$	$10,388,829$	20.667	$23,437,909$
$175,110(1.03)$	$26,560,896,936$	$89,730,352$	219.796	$186,280,687$
$178,511(1.05)$	$10,319,390,767,690$	$586,360,102$	$1,684.215$	$1,183,335,939$
$183,611(1.08)$	$623,456,177,103,148$	$1,154,540,999$	$3,411.512$	$2,318,089,817$
$187,011(1.10)$	$1,311,263,635,264,660$	$1,002,804,299$	$2,980.704$	$2,009,425,775$
$190,411(1.12)$	$1,442,845,484,382,530$	$460,708,572$	$1,255.781$	$923,313,563$
$195,512(1.15)$	$1,445,778,909,234,550$	$3,599,172$	5.565	$7,224,627$
$(*) 198,385(1.17)$	$1,445,778,936,756,068$	498,417	0.664	996,835

(*): maximum cost. (here $h=f$ )

## Self-avoiding 24 States tour to cover population

## Our ZDD-based algorithm could get the distribution of all 398,924,116 feasible solutions.

Table 2. Results for 24 states self-avoiding tours with population costs Contiguous US map graph ( $|V|: 48,|E|: 105$ ) with population costs

lower cost bound   (ratio)	proposed method (IntervalMemo)		(NaiveMemo)	
	\#solutions	ZDD	time(sec)	time(sec)
$247,542,080(100 \%)$	1	24	0.085	78.861
$242,591,238(98 \%)$	11	46	0.085	77.516
$235,164,976(95 \%)$	223	545	0.087	76.789
$222,787,872(90 \%)$	36,438	8,421	0.092	79.056
$210,410,768(85 \%)$	747,341	39,260	0.126	82.907
$198,033,664(80 \%)$	$6,151,634$	117,160	0.222	87.126
$185,656,560(75 \%)$	$29,613,872$	238,176	0.410	143.170
$160,902,352(65 \%)$	$142,020,633$	399,070	0.612	289.366
$136,148,144(55 \%)$	$317,105,606$	330,516	0.463	467.883
$123,771,040(50 \%)$	$368,379,152$	201,716	0.275	516.095
$111,393,936(45 \%)$	$394,219,874$	103,542	0.153	526.322
$99,016,832(40 \%)$	$398,776,535$	43,577	0.099	522.995
$91,590,569(37 \%)$	$398,919,281$	29,560	0.089	524.485
$85,077,802(34.37 \%)$	(*) $398,924,116$	26,798	0.088	520.014

$\left(^{*}\right):$ contains all feasible solutions. $\left(S_{f}=S_{h}\right)$

## Distribution of the solutions in terms of population



## Future direction of my interests

Integration of
"Enumeration, Optimization, and Satisfiability" techniques.

## SAT-based solvers

(Prove or disprove)

ILP-based solvers
(Find one optimal solution)
Highly state-of-the-art tools CPLEX / Gurobi


Top-k
search \#SAT
MaxSAT
PB-SAT CSP ASPsolver


BDD/ZDD-compilation
(Enumerate all solutions)
Model counting \&
Probability computing

