
Shin-ichi Minato
Kyoto University

The Art of Counting Graphs

Introduction: Shin-ichi Minato

• Prof. of Kyoto University (from 2018)
• Worked for Hokkaido University, Sapporo, from 2004 to 2018
• Worked for NTT Labs. from 1990 to 2004.

• Main research area:
• 1990’s: VLSI CAD (logic design and verification)

• Proposed “Zero-suppressed BDD” (ZDD) at DAC 1993
• 2000’s: Large-scale discrete structure manipulation

for data mining, graph algorithms, knowledge compilation, etc.
• Proposed fast data mining “LCM over ZDDs” at PAKDD 2008
• ZDD-based methods for various graph problems in Knuth-Book
• Proposed “Permutation DD” (πDD) at SAT-2011
• Proposed fast statistical testing “LAMP 2.0” at ECML/PKDD 2014

• 2020～now: Research director of
“AFSA (Algorithmic Foundation for Social Advancement) project”

• Five years, 40 PI researchers, nation-wide research project
• My current interest: Integration of

“enumeration, optimization, and satisfiability” techniques
2023.10.04 2

Animation Movie on graph counting [2012]

32023.10.04

- Shows strong power of
combinatorial explosion, and
importance of algorithmic techniques.

- 3 million views in 10 years on YouTube.

Open software: “Graphillion.org”

• Toolbox for ZDD-based graph enumeration.
• Easy interface using Python graph library.

42023.10.04

International Competition on Graph Counting Algorithm (ICGCA)

52023.10.04

https://afsa.jp/icgca

International Competition on Graph Counting Algorithm (ICGCA)

62023.10.04

Sep. 7, 2023 @ Osaka, Japan

Shin-ichi Minato
Kyoto University

The Art of Counting Graphs

Shin-ichi Minato
Kyoto University

The Art of Counting Graphs:

“Combinatorial Enumeration and Ranking”

Motivating Problem (Exercise in Knuth-Book)

2023.10.04 9

• Let us enumerate all Hamiltonian paths from WA to ME.
• Efficient DP algorithm (Frontier-based method) is shown.

• Generated ZDD size: 3,616 nodes
• All Hamiltonian paths: 6,876,928 ways
• Computation time: 0.03 sec.

|V|=48, |E|=105 Each edge has a mileage
between state capitals.

After ZDD construction, is it easy or not easy?

2023.10.04 10

• Easy tasks by using ZDDs:(Linear-time for ZDD size)
• Counting number of solutions. (6,876,928 ways)
• Finding shortest/longest paths. (11,698 / 18,040 miles)
• Computing the average length of all feasible solutions.

• Seems easy but still not easy tasks:
• Counting all paths less than the average length.
• Finding the median of all feasible solutions.
• Show ranking of a given solution.
• Constructing ZDDs for all paths no more than

10% increase from the shortest path.
• Constructing ZDDs enumerating the top 5% solutions.

More difficult variation of the problem

112023.10.04

• Let us enumerate all “self-avoiding tours”
visiting 24 (a half number) of the 48 States.

• ZDD size: 26,798 nodes, Computation time: 0.09 sec.
• Total solutions: 398,924,116 ways.

• Let us cover the total population as many as possible.

Population data of 48 States [2020 US Census]

122023.10.04

Population data of 48 States [2020 US Census]

132023.10.04

The most populated 24 states self-avoiding tour

142023.10.04

Total population: 247,542,080
(Exact half population: 164,285,537)

The most populated 24 states self-avoiding tour

152023.10.04

Total population: 247,542,080
(Exact half population: 164,285,537)

The least populated 24 states self-avoiding tour

162023.10.04

Total population: 85,077,802
(Exact half population: 164,285,537)

Distribution of the solutions in terms of population

172023.10.04

Exact half population

Median

Our recent ZDD-based algorithm shows
the distribution of 398,924,116 feasible solutions.

Why easy and not easy?

2023.10.04 18

• Easy tasks by using ZDDs: (Linear-time for ZDD size)
• Counting number of solutions. (6,876,928 ways)
• Finding shortest/longest paths. (11,698 / 18,040 miles)
• Computing the average length of all feasible solutions.

• Seems easy but still not easy tasks:
• Counting all paths less than the average length.
• Finding the median of all feasible solutions.
• Show ranking of a given solution.
• Constructing ZDDs for all paths no more than

10% increase from the shortest path.
• Constructing ZDDs enumerating the top 5% solutions.
Because ZDDs are indexed in a lexicographical order,
but not indexed in a cost-oriented order.

“ZDD-based histogram” for cost-oriented indexing

2023.10.04 19

• If we can efficiently generate ZDDs of cost-bounded
solutions from the ZDD of all feasible solutions,
then we may construct a “ZDD-based histogram”.

• This is a kind of “cost-oriented index” for all feasible
solutions of a combinatorial optimization problem.

f [c <100]

……

f f [c <200]
f [c <300]

f [c <400]
f [c <500]

Generating ZDDs for cost-bounded solutions

2023.10.04

• We can very efficiently construct ZDD f of all Hamiltonian paths
(without costs) by using Knuth’s (frontier-based) algorithm.
(for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

f

g(PB-constraint)

20

Generating ZDDs for cost-bounded solutions

2023.10.04 21

• We can very efficiently construct ZDD f of all Hamiltonian paths
(without costs) by using Knuth’s (frontier-based) algorithm.
(for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

ZDD

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

Intersection

It seems easy but ...

f

g

h = f [cost < b]

(PB-constraint)

Generating ZDDs for cost-bounded solutions

2023.10.04

• We can very efficiently construct ZDD f of all Hamiltonian paths
(without costs) by using Knuth’s (frontier-based) algorithm.
(for the US map instance, only 0.03 sec to generate ZDD)

• We may construct another ZDD g for the cost constraint, and apply
intersection between the two ZDDs to generate output ZDD h.

∑ ci xi ≦ b

ZDD

All Hamiltonian
paths

Cost-bounded
combinations

f

g(PB-constraint)

Essentially same as
the classical DP-table

This ZDD
may grow exponentially!

22

Classical DP Method for PB constraint problem

2023.10.04 23

• A classical method with dynamic programming using
a DP table to store the subtotal costs for each decision.

• Pseudo-polynomial time (with the total cost values)
• Table becomes too large

in practical applications:
• Mileage
• Financial incomes
• Populations

• For the US map
with “mileage cost”,
the total cost value
becomes 35,461 (miles),
and the DP table may have 3,000,000 cells.

• Too difficult for the problem with “population cost”.

Subtotal costs

ite

m

Direct ZDD construction without ZDD g

 Recursively performs a simple backtracking on the input
ZDD f in a depth-first manner, and output a ZDD h.
 On each recursive step, the problem (f, b) is divided into

the two sub-problems (f0, b) and (f1, b-cost(x)).
 When reaching 1-terminal with the cost bound b ≧ 0,

then we accept it and return 1-terminal.
Otherwise, we reject it and return 0-terminal.

2023.10.04 24

ZDD ZDD

f h = f [cost < b]

Cost bound b

Limitation of conventional memoizing

 Conventional memoizing is not very effective for the
cost-bounded cases, because the subtotal cost of used
items may be different from one at the first visit.
 In such cases, the result may not be the same, and thus

we should check a pair of (f, b) as a key to the memo.
 When cost values are large

and have wide distributions,
the probability of memo-hitting
is significantly low, and
this method is not very effective.

 Essentially same as using
the classical DP table.

2023.10.04 25

Key idea of our proposed method

 If we revisit a same ZDD node f with a cost bound b’ different from
the first bound b, the result ZDD node h
may not be the same.

 but if b and b’ are very close, the result h
becomes the same with a high possibility.

 More formally, the result h must be the same
if there is no solution with a cost between
b and b’.

2023.10.04 26

accept_worst(f, b) : the worst (highest) cost of an accepted solution in h.
reject_best(f, b) : the best (lowest) cost of one rejected for h but in f.

accept_worst(f, b) ≦ b’ < reject_best(f, b)
We can guarantee the same result h for b and b’ if and only if :

Interval-memoized backtracking

 For each ZDD node f, we prepare a numerical-ordered
memory to store the intervals of the two cost bounds.
 accept_worst black dot ●, reject_best white dot ○.
 if we revisit f with b in the interval [●, ○) , then we avoid new

recursive call and immediately return the result at the first visit.

2023.10.04 27

We can implement it as numerical-ordered
memories using self-balancing binary
search trees, available in std::map of GNU
C++ standard library. O(log m) time for
each read/write in average.

Another problem: how to know the interval (accept_worst, reject_best) ?
We can easily compute it in the recursive process.

2023.10.04 28

Algorithm with interval-memoizing

We can compute aw, rb in a constant steps
from the two children’s results aw0, rb0, and aw1, rb1

If b in the interval [aw, rb),
reuse the last result h.

For b = -∞ : it returns empty set, and reject_best shows the min cost.
For b = +∞ : it returns f , and accept_worst shows the max cost.

Memoize the computation result h.

Returns not only the ZDD
but also the interval [aw, rb)

 Our algorithm integrates the two classical methods: BB and DP.

Hamiltonian paths for US mileage map

2023.10.04

 Knuth’s US 48 state adjacent graph (from ME to WA)
 Exactly enumerated millions of lower-cost solutions in 0.1 sec.
 10 to 600 times faster than using conventional memoizing.
 100 times faster than existing ASP solver “clingo” [Gebster2012].

29

Hamiltonian paths for 10x10 grid graph

 10×10 grid graph with uniform-random cost in [1000, 2000).
 Exactly enumerated quadrillions of lower-cost solutions in an hour.
 Extracted top-10Tera solutions from 1.4Peta feasible ones.
 Existing ASP solver “clingo” cannot work.

2023.10.04 30

Self-avoiding 24 States tour to cover population

312023.10.04

Our ZDD-based algorithm could get the distribution of
all 398,924,116 feasible solutions.

Distribution of the solutions in terms of population

322023.10.04

Exact half population

Median

Future direction of my interests

2023.10.04 33

SAT-based solvers

ILP-based solvers BDD/ZDD-compilation

(Prove or disprove)

(Find one optimal solution) (Enumerate all solutions)
Highly state-of-the-art tools

CPLEX / Gurobi
Model counting &

Probability computing

#SAT
PB-SAT CSP ASPsolver
MaxSAT

Top-k
search

Integration of
“Enumeration, Optimization, and Satisfiability” techniques.

	The Art of Counting Graphs��
	Introduction: Shin-ichi Minato
	Animation Movie on graph counting [2012]
	Open software: “Graphillion.org”
	International Competition on Graph Counting Algorithm (ICGCA)
	International Competition on Graph Counting Algorithm (ICGCA)
	The Art of Counting Graphs��
	The Art of Counting Graphs:��“Combinatorial Enumeration and Ranking”
	Motivating Problem (Exercise in Knuth-Book)
	After ZDD construction, is it easy or not easy?
	More difficult variation of the problem
	Population data of 48 States [2020 US Census]
	Population data of 48 States [2020 US Census]
	The most populated 24 states self-avoiding tour
	The most populated 24 states self-avoiding tour
	The least populated 24 states self-avoiding tour
	Distribution of the solutions in terms of population
	Why easy and not easy?
	“ZDD-based histogram” for cost-oriented indexing
	Generating ZDDs for cost-bounded solutions
	Generating ZDDs for cost-bounded solutions
	Generating ZDDs for cost-bounded solutions
	Classical DP Method for PB constraint problem
	Direct ZDD construction without ZDD g
	Limitation of conventional memoizing
	Key idea of our proposed method
	Interval-memoized backtracking
	Algorithm with interval-memoizing
	Hamiltonian paths for US mileage map
	Hamiltonian paths for 10x10 grid graph
	Self-avoiding 24 States tour to cover population
	Distribution of the solutions in terms of population
	Future direction of my interests

