AFSA

The Art of Counting Graphs

Shin-ichi Minato
Kyoto University

Introduction: Shin-ichi Minato

« Prof. of Kyoto University (from 2018)
- Worked for Hokkaido University, Sapporo,| 4
« Worked for NTT Labs. from 1990 to 2004.

- Main research area:
« 1990’s: VLSI CAD (logic design and verification)
* Proposed “Zero-suppressed BDD” (ZDD) at DAC 1993 #

« 2000’s: Large-scale discrete structure manipulation
for data mining, graph algorithms, knowledge compilation, etc.

« Proposed fast data mining “LCM over ZDDs"” at PAKDD 2008
« ZDD-based methods for various graph problems in Knuth-Book

* Proposed “Permutation DD” (rDD) at SAT-2011
* Proposed fast statistical testing “LAMP 2.0” at ECML/PKDD 2014

« 2020~now: Research director of
“AFSA (Algorithmic Foundation for Social Advancement) project”

* Five years, 40 PI researchers, nation-wide research project

« My current interest: Integration of
“enumeration, optimization, and satisfiability” techniques

2023.10.04

\9)

Animation Movie on graph counting [2012] B&

ChICB(F! E—

SBRIHAEBT
BHESDEOBZHICONT
3L &Sl

HHEDOEDHEZ A

/Total number o|f_10_ute_s that do_not pass by,the same plac_e‘tw_ip_eﬁ

- Shows strong power of
combinatorial explosion, and
Importance of algorithmic techniques. i

- 3 million views in 10 years on YouTube. =

2023.10.04

Open software: “Graphillion.org”

AFSA

- Toolbox for ZDD-based graph enumeration.
- Easy interface using Python graph library.

| 7 5_MemberList - ALG-Lab. x ¥ | EnEFw - 2EiE-tHEE x T m Gioogle H oM — ® ¥ | Compact Data Structures © X | O takemaruseraphillion « GitH =

&« C' |8 GitHub, Inc. [US]|https// github.com/takemaru/ graphillion#graphillion-——fast-lightweight—library—for-a—huge—number-of-graphs
[FARERF b — 2 EfE - gk ERATO JEBERiEig Shin-ichi Minat's H FH] Google AL - [Minatd's Indicator U+ & B8 - EiF#A L &F aNAGdesk 4F $1Z83% F50-226%

GitH“b This repository ~ &, Explore Features Enterprise Blog Sign

takemaru / graphillion & Star 70 5 Forl

Fast, ightweight graphset operation library
£{» Code
363 commits T branches 4 releases 2 contributors

@ lssues

i# branch: master ~ graphillion / [Il Pull Requests

Merge branch w0.95rc

4 Fulse
N takemaru authored 11 days age latest commit fb23d7e8£7 Ee
cmake initial commit 3 months ago ah Graphs
2023-11-04 doc make figures smaller 6 months ago P Network

International Competition on Graph Counting Algorithm (ICGCA) .9

https://afsa.jp/icgca AFSA
. Home Registration Submission Sympaosium
AFSA —————
International Competition on Graph Counting Algorithms
Home What's new
What's new August 29, 2023
Overview e The program for the ICGCA symposium, where the results will be unveiled, is available here.
Problem and July 18, 2023
benchmarks
: ¢ The GNU multi-precision library (libgmp-dev) and Xlib (libx11-dev) will be available on the
nput evaluation environment upon requests from some contestants.
Output
July 13, 2023
Number of benchmarks
¢ The wrong description for the evaluation script has been fixed; the directory path was written

Example benchmarks
as fhome/{user}/submission/, but the correct one is fhome/icgca/{user}/submission/.
Example codes

July 12, 2023
Rules Y
Contestants ¢ The evaluation script had a bug on multi-threading and has been fixed, so please re-download
it from here.
Evaluation metrics
21 Input format July 07, 2023

International Competition on Graph Counting Algorithm (ICGCA) - |
AFSA

Home Registration Submission Sympaosium

niversity of Technology)

atts Institute of Technolog

solved benchmarks
‘ QOverall |

TLDG 136 |
diodrm 134
TAG 126
Drifters 110

Too Long Didi't Count

Rabael Kiesel (vienna University of Technology)
and

g MECE (Massachusetts Institute of Technology

Solved 136 benchmark

2 Input format

AFSA

The Art of Counting Graphs

Shin-ichi Minato
Kyoto University

AFSA

The Art of Counting Graphs:

“Combinatorial Enumeration and Ranking”

Shin-ichi Minato
Kyoto University

Motivating Problem (Exercise in Knuth-Book))

V=48, [E|=105 Each edge has a mileage 1 5‘\
between state capltals N
624 215 435 153 236 68
S e SR
160 619 438 675 455 392 490 244 279 249 244 237 268 193 111 101 45
et s G S L AR
535 663 541 338 435 100 486 165 343 255 192 415 145 186 160 354 103 124 108
o N o (o
75D T13 652 355 626 293 416 340 203 532 302 129
e an
697 388 504 416 253 392 282 255 530 156

430 15(@ —@634

205 252 212 200

- Let us enumerate all Hamiltonian paths from WA to ME.

- Efficient DP algorithm (Frontier-based method) is shown.
 Generated ZDD size: 3,616 nodes
« All Hamiltonian paths: 6,876,928 ways

« Computation time: 0.03 sec.
2023.10.04 9

After ZDD construction, is it easy or not easy? ;9
AFSA

- Easy tasks by using ZDDs: (Linear-time for ZDD size)
« Counting number of solutions. (6,876,928 ways)
« Finding shortest/longest paths. (11,698 / 18,040 miles)
« Computing the average length of all feasible solutions.

- Seems easy but still not easy tasks:
« Counting all paths less than the average length.
« Finding the median of all feasible solutions.
« Show ranking of a given solution.

« Constructing ZDDs for all paths no more than
10% increase from the shortest path.

« Constructing ZDDs enumerating the top 5% solutions.

2023.10.04 10

More difficult variation of the problem

AFSA
- Let us enumerate all “self-avoiding tours”
visiting 24 (a half number) of the 48 States.
« ZDD size: 26,798 nodes, Computation time: 0.09 sec.
- Total solutions: 398,924,116 ways.

« Let us cover the total population as many as possible.
@1(16@139—@

024 215 4455 Lad 238 68

ST SR
160 619 AB8 @73 35 392 49D 241 273 24y 241 237 268 194 111 1ol 15
B o o
LAL 603 D41 23R 435 140D 484G 1645 343 205 9 415 145 186 1640 354 103 124 108
oL e e o
Tha Fld w52 353 4644 203 116 340 203 532 302 129

i

5 (0K 337 (AR \;{N

0097 888 Ln4 41E 253 92 2REZ 25 Han_ 15h6

15 ﬁs{zu @ 160 434

252 212 200

/Qf}
%
%
ﬁ(

£

@

it

¥4
G

2023.10.04

State Code| Population
Alabama AL 5,024,279
Arizona A7 7,151,502
Arkansas AR 3,011,524
California CA 39,538,223
Colorado CO 5,773,714
Connecticut CT 3,605,944
Delaware DE 989,948
Florida FL 21,538,187
Georgia, GA 10,711,908
Idaho ID 1,839,106
Illinois IL 12,812,508
Indiana IN 6,785,528
Iowa. IA 3,190,369
Kansas KS 2,937,880
Kentucky KY 4,505,836
Louisiana LA 4,657,757
Maine ME 1,362,359
Maryland MD 6,177,224
Massachusetts MA 7,029,917
Michigan MI 10,077,331
Minnesota MN 5,706,494
Mississippi MS 2,961,279
Missouri MO 6,154,913
Montana MT 1,084,225

Population data of 48 States [2020 US Census]

Nebraska, NE 1,961,504
Nevada NV 3,104,614
New Hampshire NH 1,377,529
New Jersey NJ 9,288,994
New Mexico NM 2,117,522
New York NY 20,201,249
North Carolina NC 10,439,388
North Dakota ND 779,094
Ohio OH 11,799,448
Oklahoma OK 3,959,353
Oregon OR 4,237,256
Pennsylvania PA 13,002,700
Rhode Island RI 1,097,379
South Carolina SC 5,118,425
South Dakota SD 886,667
Tennessee TN 6,910,840
Texas TX 29,145,505
Utah UT 3,271,616
Vermont VT 643,077
Virginia VA 8,631,393
Washington WA 7,705,281
West Virginia WV 1,793,716
Wisconsin WI 5,893,718
Wyoming WY 576,851
Total 328,571,074

9

AFSA

12

2023.10.04

State Code| Population
Alabama AL 5,024,279
Arizona A7 7,151,502
Arkansas AR 3011 524
California CA 39,538,223
Colorado CO 0,((3,(14
Connecticut CT 3,605,944
Delaware DE QR0 948
Florida FL 21,538,187
Georgia GA | 10,711,908
Idaho ID 1,839,106
Illinois IL 12,812,508
Indiana IN 6,785,528
Iowa IA 3,190,369
Kansas KS 2,937,880
Kentucky KY 4,505,836
Louisiana LA 4,657,757
Maine ME 1,362,359
Maryland MD 6,177,224
Massachusetts MA 7,029,917
Michigan MI 10,077,331
Minnesota MN 5,706,494
Mississippi MS 2,961,279
Missouri MO 6,154,913
Montana MT 1,084,225

Population data of 48 States [2020 US Census]

Nebraska, NE 1,961,504
Nevada NV 3,104,614
New Hampshire NH 1,377,529
New Jersey NJ 9,288,994
New Mexico NN ‘)71 1 775‘)‘)
New York NY 20,201,249
North Carolina NC 10,439,388
North Dakota ND 779,094
Ohio OH 11,799,448
Oklahoma OK 3,959,353
Oregon OR 4,237,256
Pennsylvania PA 13,002,700
Rhode Island RI 1,097,379
South Carolina SC 5,118,425
South Dakota SD 886,667
Tennessee TN 6910 40
Texas TX 29,145,505
Utah Ul 3,271,616
Vermont VT 643,077
Virginia VA 8,631,393
Washington WA 7,705,281
West Virginia WV 1,793,716
Wisconsin WI 5,893,718
Wyoming WY 576,851
Total 328,571,074

9

AFSA

13

The most populated 24 states self-avoiding tour

(ﬁf&ma@mg—@

024 215 455 Lad 236 68

42 —{SD) 40@25@614@ (Y)Y "‘3'

16y 619 A38 873 135 392 490 241 2TH 244 241 237 e 1pd 111 101 15

2

SAN AGR h41 838 485 1400 486 165

5 8
5@

415 145 186 160 354 103 124 1@Ss

562 \j#éa?@

153 203 53d 3502

. (1ld 632

Total population: 247,542,080
(Exact half population: 164,285,537)

2023.10.04 14

The most populated 24 states self-avoiding tour

(ﬁf&ma@mg—@

024 215 455 Lad 236 68

& f4 ‘@ D

16y 619 A38 873 135 392 490 241 2TH 244 241 237 e 1pd 111 101 15

AN AGR h41 838 485 1400 486 1ah 415 145

@

156 160 3h4 103 124 1@&

KY—197

. (1ld 632

JNg 2R2 12 200

Total population: 247,542,080 (&
(Exact half population: 164,285,537)

2023.10.04 15

The least populated 24 states self-avoiding tour

W)

i

AFSA

(ﬁf&ma@mg—@

Lad 236 68

X @

201 27H 244 241 237 268 194 111 101 15

o182 415 145 186 160 354 103 124 108

dus 252 Ud12 200

Total population: 85,077,802
(Exact half population: 164,285,537)

2023.10.04

291:[}5_.{19{}@ 174227@

(133)

16

Distribution of the solutions in terms of population - |

Our recent ZDD-based algorithm shows
the distribution of 398,924,116 feasible solutions.

2023.10.04

Population

350,000,000
300,000,000
250,000,000
200,000,000
150,000,000
100,000,000

50,000,000

0

Median

Exact half population

1 100,000,001

200,000,001

Ranking

300,000,001

400,000,001

AFSA

17

Why easy and not easy? 9

- Easy tasks by using ZDDs: (Linear-time for ZDD size)AFSA

« Counting number of solutions. (6,876,928 ways)
« Finding shortest/longest paths. (11,698 / 18,040 miles)
« Computing the average length of all feasible solutions.

« Seems easy but still not easy tasks:
« Counting all paths less than the average length.
« Finding the median of all feasible solutions.
« Show ranking of a given solution.

« Constructing ZDDs for all paths no more than
10% increase from the shortest path.

« Constructing ZDDs enumerating the top 5% solutions.

Because ZDDs are indexed In a lexicographical order,

but not indexed in a cost-oriented order.

2023.10.04 18

“ZDD-based histogram” for cost-oriented indexing 9
AFSA

- If we can efficiently generate ZDDs of cost-bounded
solutions from the ZDD of all feasible solutions,
then we may construct a “ZDD-based histogram”.

« This is a kind of “cost-oriented index” for all feasible
solutions of a combinatorial optimization problem.

f fle<100] f[c<300] f[c<500]
f[c <400]

2023.10.04 19

Generating ZDDs for cost-bounded solutions i)

* We can very efficiently construct ZDD £ of all Hamiltonian paths
(without costs) by using Knuth's (frontier-based) algorithm.
(- for the US map instance, only 0.03 sec to generate ZDD)

« We may construct another ZDD g for the cost constraint, and apply
Intersection between the two ZDDs to generate output ZDD 4.

s @ All Hamiltonian
B LTELEIER, T | paths
s s e G @ D f
@ W G e Qo oo Wor oD (199)
B . o :> ZDD
Frdhelh R
B ® Cost-bounded
(PB-constraint) combinations

g
Yex < b -

2023.10.04 20

Generating ZDDs for cost-bounded solutions 9
AFSA

* We can very efficiently construct ZDD £ of all Hamiltonian paths
(without costs) by using Knuth's (frontier-based) algorithm.
(- for the US map instance, only 0.03 sec to generate ZDD)

« We may construct another ZDD g for the cost constraint, and apply
Intersection between the two ZDDs to generate output ZDD 4.

It seems easy but ...

All Hamiltonian

B LIRS R | paths
T et o e e) 0 h = f [cost < b]
Er G G G P W oo (133) /
R —> [zp\ 4
i
e Cost-bounded Intersection
(PB-constraint) combinations DD
g
Yex < b
ZDD

2023.10.04 21

Generating ZDDs for cost-bounded solutions i)

* We can very efficiently construct ZDD £ of all Hamiltonian paths
(without costs) by using Knuth's (frontier-based) algorithm.
(- for the US map instance, only 0.03 sec to generate ZDD)

« We may construct another ZDD g for the cost constraint, and apply
Intersection between the two ZDDs to generate output ZDD 4.

e S All Hamiltonian _
iiiﬁ ﬁ{jjﬁi paths Essentially same as
SEFEEEoE) L SN (the classical DP-table
I i 0 ZDD

el
ww Cost-bounded
(PB-constraint) combinations

This ZDD
may grow exponentially!

22

g
Yex,=b :>

2023.10.04

Classical DP Method for PB constraint problem 9
AFSA

* A classical method with dynamic programming using
a DP table to store the subtotal costs for each decision.
» Pseudo-polynomial time (with the total cost values)
» Table becomes too large

In practical applications: Subtotal costs
° I\/Iileage o1 2 3 4567489
» Financial incomes RERE
. E -...\ *\"\‘\
* Populations |5 L__Hx..__‘x RNl
 For the US map s [o BN
with “mileage cost”, N VIR [V VR VNN [V
the total cost value

becomes 35,461 (miles),
and the DP table may have 3,000,000 cells.

* Too difficult for the problem with “population cost”.

2023.10.04 23

i Direct ZDD construction without ZDD g

= Recursively performs a simple backtracking on the input
ZDD £ in a depth-first manner, and output a ZDD #.

= On each recursive step, the problem (7, b) is divided into
the two sub-problems (f,, b) and (f,, b-cost(x)).

= When reaching 1-terminal with the cost bound 5 = 0,
then we accept it and return 1-terminal.
Otherwise, we reject it and return O-terminal.

f h =f[cost < b]
Cost bound b

)

ZDD ZDD

2023.10.04 24

i Limitation of conventional memoizing

= Conventional memoizing is not very effective for the
cost-bounded cases, because the subtotal cost of used
items may be different from one at the first visit.

= In such cases, the result may not be the same, and thus
we should check a pair of (f, b) as a key to the memo.

= \When cost values are large
and have wide distributions,
the probability of memo-hitting 2 =250(b
Is significantly low, and
this method is not very effective.

= Essentially same as using
the classical DP table.

0 1
2023.10.04

25

i Key idea of our proposed method

If we revisit a same ZDD node f with a cost bound b’ different from
the first bound b, the result ZDD node #
may not be the same. b=2500b=175

but if » and b’ are very close, the result 4
becomes the same with a high possibility.

More formally, the result 2 must be the same
If there is no solution with a cost between
b and b’.

0 |

accept worst(f, b) : the worst (highest) cost of an accepted solution in 4.
reject_best(f,b) : the best (lowest) cost of one rejected for A but 1n f.

We can guarantee the same result 4 for b and b’ if and only if :
accept_ worst(f, b) = b’< reject_best(f, b)

2023.10.04 26

Interval-memoized backtracking

= For each ZDD node f, we prepare a numerical-ordered
memory to store the intervals of the two cost bounds.

= accept worst = black dot @, reject best 2 white dot O.

=« if we revisit fwith b in the interval [@, O) , then we avoid new
recursive call and immediately return the result at the first visit.
(175) (250)
oo 153% 230 245i265

" | We can implement it as numerical-ordered
memories using self-balancing binary
search trees, available in std::map of GNU
C++ standard library. > O(log m) time for
each read/write in average.

——0—e'0
b=250, b=175y . 5 b

.
"‘
-
.
*

Another problem: how to know the interval (accept worst, reject best) ?

- We can easily compute it in the recursive process.
2023.10.04 27

‘ Algorithm with interval-memoizing

-BacktrackIni?Memo(ZDD. f.int b) | Returns not only the ZDD
{/ returns a triple (ZDD h, int accept_worst, reject _best) but also the interval [aw, rb)
if f = [0] return ([0], —oc, 0)
if f=[1] then
if b > 0 return ([1],0, 00)
else return ([0], —o0, 0) <[|f b in the interval [aw, rb),]
(h, aw,rb) < memolf, b|; if exists return (h, aw, rb) reuse the last result A.

// [consists of (x, fo, f1)
(ho, awo, rbo) < BacktrackIntMemo(fo, b)
(h1,awi,rb1) < BacktrackIntMemo(f1,b— cost(x))

h < ZDD(x, ho,h1) // applying ZDD reduction

aw <= max(awo, awi + COSt(‘"Enéi We can compute aw, rb in a constant steps]

rb <— min(rbo, rbi + cost(x)) : :
memolf, [aw, rb)] + h from the two children’s results aw,, rb,, and aw,, rb,

return (h, aw, rb)

}

7 Memoize the computation result 4.

For b = - : it returns empty set, and reject best shows the min cost.
For b =+ : it returns f, and accept worst shows the max cost.

—> Our algorithm integrates the two classical methods: BB and DP.
2023.10.04 28

Hamiltonian paths for US mileage map

= Knuth’'s US 48 state adjacent graph (from ME to WA)

= Exactly enumerated millions of lower-cost solutions in 0.1 sec.

= 10 to 600 times faster than using conventional memoizing.

= 100 times faster than existing ASP solver “clingo” [Gebster2012].
Contiguous US map graph (|V|: 48, |E|: 105) with mileage costs

cost bound proposed method (IntervalMemo) || (NaiveMemo) || clingo

(ratio)| #solutions|[ZDD time(sec) time(sec) || time(sec)
11,698 (+0% 1 47 0.029 1.083 10.784
11,814 (+1% 8 99 0.029 1.077 5.243
11,931 (+2% 28 152 0.033 1.086 7.028
12,282 (+5% 388 | 1,001 0.031 1.115 8.783
12,867 (+10% 16,180| 9,679 0.035 1.179 12.080
14,037 (+20% 939,209 72,308 0.098 1.431 26.276
15,207 (-30% 4,525.541|99.759 0.126 1.719|| 40.463
16,377 (+40% 6,702,964 | 38,548 0.055 1.901 39.015
17,547 (+50% 6,876,526 | 4,934 0.029 1.828 36.879
18,040 (+54%)|(*) 6,876,928 3,616 0.029 1.836 37.031
(*): contains all feasible solutions. (S = S},)

2023.10.04

29

Hamiltonian paths for 10x10 grid graph

= 10 X 10 grid graph with uniform-random cost in [1000, 2000).
= Exactly enumerated quadrillions of lower-cost solutions in an hour.
= Extracted top-10Tera solutions from 1.4Peta feasible ones.

10 x 10 grid graph (V: 121, E: 220)

bound b (ratio) #solutions ZDD |h| proposed method

time(sec) #calls

170,010 (1.00) 1 120 0.588 997,797
171,710 (1.01) 416,589 276,180 0.896 1,641,231
173,410 (1.02) 270,414,340 10,388.829| 20.667| 23.437.909
175,110 (1.03) 26.560,896.936| 89.730,352| 219.796| 186,280,687
178,511 (1.05)| 10,319,390,767,690| 586,360,102|1,684.215|1,183,335,939
183.611 (1.08)| 623,456,177,103,148|1,154,540,999|3,411.512|2,318,089,817
187,011 (1.10)|1,311,263,635,264,660(1,002,804,299|2,980.704|2,009,425,775
190,411 (1.12)|1,442,845,484,382,530| 460,708,572|1,255.781| 923,313,563
195,512 (1.15)|1,445,778,909,234,550| 3,599,172| 5.565| 7,224,627
(%) 198,385 (1.17)|1,445,778,936,756,068 498 417| 0.664 096.835

(*): maximum cost. (here h = f)
2023.10.04 30

Self-avoiding 24 States tour to cover population - |

AFSA
Our ZDD-based algorithm could get the distribution of

all 398,924,116 feasible solutions.

Table 2. Results for 24 states self-avoiding tours with population costs
Contiguous US map graph (|V|: 48, |E|: 105) with population costs

lower cost bound proposed method (IntervalMemo) || (NaiveMemo)

(ratio) #solutions| [ZDD]|time(sec) time(sec)
247,542,080 (100%) 1 24 0.085 78.861
242 591,238 (98% 11 46 0.085 77.516
235,164,976 (95% 223 545 0.087 76.789
222,787,872 (90%) 36,438 | 8,421 0.092 79.056
210,410,768 (85%) 747,341 39,260 0.126 82.907
198,033,664 (80% 6,151,634 (117,160 0.222 87.126
185,656,560 ETE% 29,613,872|238,176 0.410 143.170
160,902,352 (65%) 142,020,633 |399,070 0.612 289.366
136,148,144 (55% 317,105,606 | 330,516 0.463 467.883
123,771,040 EED% 368,379,152 |201,716 0.275 516.095
111,393,936 (45%) 394,219,874 (103,542 0.153 526.322
99,016,832 (40% 398,776,535 | 43,577 0.099 522.995
91,590,569 (37% 398,919,281 | 29,560 0.089 524.485
85,077,802 (34.37%) | (*) 398,924,116| 26,798 0.088 520.014

(*): contains all feasible solutions. (Sy = Sg)

2023.1(31

Distribution of the solutions in terms of population - |

2023.10.04

Population

350,000,000
300,000,000
250,000,000
200,000,000
150,000,000
100,000,000

50,000,000

0

Exact half population

Median W
1 100,000,001 200,000,001 300,000,001
Ranking

400,000,001

AFSA

32

i

Future direction of my interests
AFSA

Integration of
“Enumeration, Optimization, and Satisfiability” techniques.

a SAT-based solvers A
(Prove or disprove)
MaxSAT #SAT
PB-SAT CSP ASPsolver

ILP-based solvers BDD/ZDD-compilation
(Find one optimal solution) (Enumerate all solutions)
- LR Model counting &
Highly state-of-the-arttools - odel counting

\ CPLEX / Gurobi Probability computing j

2023.10.04

	The Art of Counting Graphs��
	Introduction: Shin-ichi Minato
	Animation Movie on graph counting [2012]
	Open software: “Graphillion.org”
	International Competition on Graph Counting Algorithm (ICGCA)
	International Competition on Graph Counting Algorithm (ICGCA)
	The Art of Counting Graphs��
	The Art of Counting Graphs:��“Combinatorial Enumeration and Ranking”
	Motivating Problem (Exercise in Knuth-Book)
	After ZDD construction, is it easy or not easy?
	More difficult variation of the problem
	Population data of 48 States [2020 US Census]
	Population data of 48 States [2020 US Census]
	The most populated 24 states self-avoiding tour
	The most populated 24 states self-avoiding tour
	The least populated 24 states self-avoiding tour
	Distribution of the solutions in terms of population
	Why easy and not easy?
	“ZDD-based histogram” for cost-oriented indexing
	Generating ZDDs for cost-bounded solutions
	Generating ZDDs for cost-bounded solutions
	Generating ZDDs for cost-bounded solutions
	Classical DP Method for PB constraint problem
	Direct ZDD construction without ZDD g
	Limitation of conventional memoizing
	Key idea of our proposed method
	Interval-memoized backtracking
	Algorithm with interval-memoizing
	Hamiltonian paths for US mileage map
	Hamiltonian paths for 10x10 grid graph
	Self-avoiding 24 States tour to cover population
	Distribution of the solutions in terms of population
	Future direction of my interests

