Repairing DoS Vulnerability of Real-World Regexes

Nariyoshi Chida'? and Tachio Terauchi?
INTT Security Japanx; 2Waseda University

@S&P 2022
25 May 2022

¢ Temporary transfer from NTT Corporation

Regular Expressions (Regexes)

Regexes are ubiquitous in modern software development.

Sanitizing user inputs:

Extracting data from unstructured text:

Web Application

-
=
=
-

_ s Send an input string e <+— /\([0-9]{1’3}[]){3}[0-9]{1’3}$
& .
Regex Engine Hessuge The "Authorization.exe" variant in this repor>~_-—=cto have been available at some
point through the following URL: "hxxp://bongdacoxx :.._,'_“»fhorga_tion.exe".
AE@ F[]*S _ The domain currently resolves to the following IP address: I;liZ_.Zl&Bz_.:;_, ‘glga_t .
Regex for email validation some point, the domain was associated with the following IP addreSS-ES_]..l'?l).iﬁ_S.z(L.

Validate the input string using regex IOC EXtra CtIOn frOm th reat re pO rtS

General purpose libraries:

&, :regex engine ﬂ‘@d@ g)Java @ python™ ***

-~ —

Regular Expressions (Regexes)

But unfortunately...

Regexes are Hard!

Writing (or repairing) regexes are difficult... michaer 2019)

| need a regex for validating
an email address.

It doesn’t work.
O How should I fix it?

RS > @

Prepare the regex
(write manually or reuse it from StackOverflow)

Too complex to repair...

Prepared regex: v

(7: [a-20-9!#5%& *+/=2"_"{| }~=]1+(7:\. [2-20-9 ! #5%& " x+/=7"_"{| }~=1+)%|" (?: [\x01-\x0!
\xBb\x@c\xBe-\x1f\x21\x23-\x5b\x5d-\x7f] | \\ [\x@1-\x09\xBb\xBc\x0e-\x7f] }x")@(?: ("
: [a-20-9) (?: [a-20-9-]%[a-20-9]) ?\..)+ [a-20-9] (?: [a-20-9-]x[a-20-9]) ? |\ [{?: (2: (2(5
8-5] | [@-4] [@-9]) |1[0-9] [@-9] | [1-9]17([0-9]))\.){3}(7:(2(5[0-5] | [@-4] [@-9]) |1[0-9] [
=9] | [1-9]7[0-9]) | [a=2@-9=]*[a=20-9] : (7: [\x@1-\x88\x0b\x0C\xBe-\x1f\x21-\x5a\x53~"
x7] [\\ [\x@1-\x89\x0b\x0c\x0e-\x7f]) +)\])

A

Test cases: Validation failed

Test cases for the regex

Correct email address Incorrect email address

foo@example.com fooexample.com
B_a.R@example.com

Programming-By-Example (PBE)

One prominent approach to improve this situation is
writing regexes with PBE method.

[Lee+ 2016] [Pan+ 2019] [Chen+ 2020]...

Prepared regex:

(7: [a-20-9! #5%& wea/=7~_" {| I=]+(7:\, [a-20-9 ! #$%& H4/=7"_" {| }r=]+)%|" (7: [\x01-\x0F
\x@b\x0c\x@e-\x1f\x21\x23-\x5b\x5d-\x7f] | \\ [\x01-\x09\x@b\x0c\x@e-\x7f])*")@(?: (i
: [a-20-9] (7: [a-20-9-]x[a-20-9]) 7\.) +[a-28-9] (7: [a-2@8-9-]*[a-20-9]) 7|\ [(7: (7: (2(5]
@-5] | [0-4) [@-9]) |1[e-9] [0-9] | [1-9] 7 [@-9]))\.) {3}(?: (2(5([e-5] | [e-4] [6-9]) | 1[@-9] [¢
-9]| [1-9]17[0-9]) | [a-z0-9-]*[a-20-9] : (7: [\xB1-\x08\xOb\x0c\xBe-\x1f\x21-\x5a\x53-"
x71] [\\ [\x01-\x09\x@b\x@c\x@e-\x7f])+)\])

| — m — Repaired regex

PBE tools

Consistent with all examples
(i.e., correct regex).

Test cases:

Test cases for the regex

7
Correct email address Incorrect email address

foo@example.com fooexample.com
B_a.R@example.com S

negative examples (strings to be rejected)

Reflect users’ intentions by examples.]

positive examples (strings to be accepted)

Now, are we free from the difficulties of regexes?

Now, are we free from the difficulties of regexes?

No!

We are still facing the difficulties of their vulnerabilities
called regex denial of services (ReDo05).

Indeed, the existing PBE methods may generate vulnerable regexes.
[Li+ 2020]

Regex Denial of Service (ReDoS)

ReDoS is the vulnerability that causes the regex matching
algorithm to take super linear time.

ReDoS is a significant threat to our society

Details of the Cloudflare outage CVE-2015-14232 Denfal-of -service possibility n
on July 2 2019 django.utils.text.Truncator
[}

2019/07/13) Ifdjango.utils.text.Truncator's chars() and words() methods were passed
On July 2, we deployed a new rule in our WAF Managed Rules that caused CPUS O | e html=True argument, they were extremely slow to evaluate certain inputs due to a
become exhausted on every CPU core that handles HTTP/HTTPS traffic on the catastrophic backtracking vulnerability in a regular expression. The chars() and
Cloudfla words() methods are used to implement the truncatechars_html and

Stack Exchange Network truncatewords_htal te

Status CVE-2021-41817 Learn more at National Vulner.

* CVSS Severity Rating e Fix Informatior

On July 20, 2016 we experienced a 34 minute outage starting at 14:44 UTC. It took 10 mi
Description

identify the cause, 14 minutes to write the code to fix it, and 10 minutes to roll out the fiX { pate parse in the date gem through 3.2.0 for Ruby allows ReDoS |

where Stack Overflow became available again. i

In this talk

We introduce a tool called REMEDY that rectifies this situation.

Input:

(Possibly incorrect and vulnerable)
real-world regex

Positive and negative examples

A 4

o

U

REMEDY

. A

Output:

Correct and invulnerable
real-world regex

In this talk

We introduce a tool cal

Input:

(Possibly incorrect and vulnerable)
real-world regex

Importantly, our method can handle the regexes

that have real-world extensions such as

lookarounds,
capturing groups, and
Backreferences.

Positive and negative examples

A 4

N\

U

REMEDY

. A

Correct and invulnerable

real-world regex

10

Challenges & Contributions

1.

2.

The Definition of ReDoS vulnerability of real-world regexes

A novel formal semantics and the time complexity of backtracking matching
algorithm for real-world regexes

The Repair Problem

A novel condition called real-world strong 1-unambiguity (RWS1U) and
formalize the corresponding PBE repair problem (RWS1U repair problem)

Algorithm
An algorithm for solving the RWS1U repair problem

11

Outline

Real-World Regexes

ReDoS Vulnerabilities of Real-World Regexes
RWS1U and Repair Problem

Repair Algorithm and Evaluation

e Conclusion

Outline

Real-World Regexes

ReDoS Vulnerabilities of Real-World Regexes
RWS1U and Repair Problem

Repair Algorithm and Evaluation

Conclusion

13

Real-World Regexes

Syntax: r = |[C||€|rr|r|r|r

(i N[=0]) | <=0 | (7<)

Real-World Regexes
Standard
Syntax: r = |[C||e|rr|r|r|r

| i\ (=0 [N | O<=x) [(?<x)

|

Real-world extensions

15

Real-World Regexes

Syntax: r = [C] | e|rr|r|r|r

| ()i |\ =n) |) | ?<=x) | (<)

[C] is a character set. Cis a set of characters.

We sometimes write a for [{a}].

Example:

[a-cz] matches one of the characters a, b, ¢, and z.

16

Real-World Regexes

Syntax: r = |[C||€|rr|r|r|r

(M| \i| Q=0 | 1D | <=x) | 2<10)

(r), is a capturing group and it stores the matched string with the index i.

¥iis a backreference and it refers to the string captured by (r)..

Example:
<(-*)1>-*<}u¥_1j> <html>...</html> = accept
<html>...</body> = reject (¥1 fails)
f f

(.*), captures the string html ¥1 refers to the string html

17

Real-World Regexes

Syntax: r = |[C||€|rr|r|r|r

(i \i| Q=0 | @D | @<=x) | 2<10)

Lookaheads attempt to match r without any character consumption.
Positive lookahead (?=r) succeeds if r succeeds.
Negative lookahead (?!r) succeeds if r fails.

Example:

(7="@)." foo@example.com = accept
fooexamle.co.jp = reject

((?=.*@) fails since there is no @)

18

Real-World Regexes

Syntax: r = |[C]|€|rr|rlr|r

(i \i| Q=0 | @D | @<=x) | <L)

Fixed-length Lookbehinds look back and attempt to match x without
any character consumption.

Example:

*(?<ljp) foo@example.com = accept
fooexamle.co.jp = reject

o 7

((?<!jp) fails since the suffix is “jp”.

19

Outline

 ReDoS Vulnerabilities of Real-World Regexes

20

ReDoS Vulnerabilities of Real-World Regexes

ReDoS vulnerability concerns the complexity of backtracking
matching algorithm.

Therefore, we define the semantics that models the behavior of
backtracking matching algorithm by the matching relation~» .

Real-world regex Position on the input string

/

(rv W,p,r) ~~ {(plarl):(p29F2):'"a(pnarn)}
/\ ™~

Input string ¢ iconment Set of matching results

(that stores strings for each index) »

Rules of the Matching Relation

p<|w| wlpleC
(Cliw,p.T)~ {(p+1,I}
p=|w/ Vwp|¢C
([Cl,w,p,T)~ 0

(e,w,p,T)~ {(p,1)}

V) F' 5 r‘. A
Ll €S, (WPl M oo rmarion

(SET OF CHARACTERS)

(SET OF CHARACTERS FAILURE)

(EMPTY STRING)

(rl !w’pﬁr)M N
(rir2,w,p,T) ~ Un<ic|p| M

(rl,W,p,r‘)f\.»./V (rZ:W:par)'\"./V"
(ri|r2,w,p,T) ~ N U AN (UNION)
(r,w,p,l“)—u/
Y(pi.I; » 4 DB, (7w, pi, T~ A
(PuT0) € (ANP.DD, (FompiT) e oAl o)

(r*,w, p,T) ~ {(p. 1) }UUo<i<| (s \i(p) 1 K

(r,w,p,I) ~ A

((r)j,W,p,I") ~r {(pl,r‘.[-’ — W[PP;)]) | (Pl’,ri) € ./V} (CAPTURING GROUP)
r(i) # 1 (r(i): W, P, r) ~ N

T W ETP G (BACKREFERENCE)
I'i)=L1
N w(?, T~0 (BACKREFERENCE FAILURE)
(row, p,I) ~ A

@=nwp D)~ (D) [(LT e} (POSITIVE LOOKAHEAD)

(]’,W,p,”"”JV ./V’=lte(-./y?l:0:0${(psr)})
(), w, p,T) ~> A"

(NEGATIVE LOOKAHEAD)

(x,wlp=Ix.p),0,)~> A A =ite(N #0,{(p,])},0)
(?<=x),w,p,I') ~> A"
(POSITIVE LOOKBEHIND)
(x,wlp—|x]..p),0,T)~ A" A" =ite(# #0,0,{(p,])})

((<'x),w,p,T) ~ A"’
(NEGATIVE LOOKBEHIND)

Fig. 11: Rules of the matching relation ~»

22

Example:
Matching of (a*)* with the input string ab

1 <|ab| b ¢ {a}
0 < |ab| a € {a} (a,ab,1) ~ 0 1< |ab| b ¢ {a}
(a,ab,0) ~ {1} (a*,ab,1) ~ {1} (a,ab,1) ~ 0
(a*, ab,0) ~ {0, 1} ((a*)*,ab,1) ~ {1}

((a*)*, ab,0) ~ {0,1}

ReDoS Vulnerabilities of Real-World Regexes

Definition (Running time):

For a regexr and a stringw, we define the running time of the backtracking

matching algorithm onr andw, Time(r,w) , to be the size of the derivation tree
of (rnw,0,0)~ A,

Definition (Vulnerable regexes):

We say that a regexr is vulnerable if Time(r,w) ¢ O(|w|) .

24

Outline

Real-World Regexes

ReDoS Vulnerabilities of Real-World Regexes
RWS1U and Repair Problem

Repair Algorithm and Evaluation

Conclusion

25

How can we guarantee ReDoS invulnerability?

The root cause of ReDoS is backtrackings due to the ambiguity.

=> We modify a regex to eliminate the ambiguity.

Regex for an email address:

r@F]* —> [Pel*erer*].*

T Disambiguate

It’s too relaxed!
(.* and .* do not need to accept the character @.)

26

How can we guarantee ReDoS invulnerability?

The root cause of ReDoS is backtrackings due to the ambiguity.

=> We modify a regex to eliminate the ambiguity.

g We defined a grammatical condition sufficient to A
ensure ReDoS invulnerability called
_ real-world strong 1-unambiguity (RWS1U).)

Extension of strong 1-unambiguity [Koch and Scherzinger 2007].
We'll explain this next (see paper for formal def.)

Real-World Strong 1-Unambiguity (RWS1U)

Lookahead removal: Bracketing: Extended NFA translation:

(-)
[abc] : (?:)\1 RWS1U enforces that the matching algorithm can
determine which subexpression to match next by

!] Replace lookaheads with € L looking at the next character in the input string.)

abe]"\1 =) [1[2([3abc]3)*]2[4\1]4]1

Real-World Strong 1-Unambiguity (RWS1U)

Lookahead removal: Bracketing: Extended NFA translation:

abe]*(?=a)\1

@ Replace lookaheads with €

(-)
RWS1U enforces that the matching algorithm can

determine which subexpression to match next by

L looking at the next character in the input string.

[a,bc]*\l I:> [1[2([3abc]3)*]2[4\1]4]1 RWS1U violation

The character @ has two bracketing-only paths.
(Therefore, violates RWS1U.)

29

RWS1U Repair Problem

Input:

* (Possibly incorrect and vulnerable) regex : r
* Set of positive examples : P
* Set of negative examples : N

Output:

* Regex r‘ that is consistent with examples, «— For correctness
satisfies RWS1U, and <«—— For ReDoS invulnerability
o the edit distance from the input regex is minimal.

For quality

30

RWS1U Repair Problem

Input:

. (Pocsibly | .
. ((DSLb.hLLD.l‘_D.LLELT_a.D.d_\LLLLD.ELa.b.@_LEZEX ~
. | The RWS1U repair problem is NP-hard!

We can show this by a reduction from Exact Cover

Outp| which is NP-complete.

The proof can be found in our paper.

° h_ ~_Jrrectness

satisfies RWS1U, and <«—— For ReDoS invulnerability
o the edit distance from the input regex is minimal.

For quality

31

Outline

Real-World Regexes

ReDoS Vulnerabilities of Real-World Regexes
RWS1U and Repair Problem

Repair Algorithm and Evaluation

Conclusion

32

Repair Algorithm

Our repair algorithm is

Enumerative Search
+

Pruning by Approximations

Builds on [Pan+ 2019].

+
SMT-based Constraint Solving

33

High Level Repair Algorithm

Input: Output:

r

——

—[Generating templates H Pruning]

SRl

[Searching assignmentJ L p!

Correct and invulnerable regex

34

Repair Algorithm: Example

[Generating templates]

Input:
r=<(")1>"</\1>

P = {<ab></ab>, <a>ab}

N = {<a>, <a>, <a><ab>}

[Searching assignment]

35

Repair Algorithm: Example

[Generating templates]

[Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

 Replace the subexpressions with holes O

< () >T</\1>

—> <(

After some iterations

= %

)1 >

5 < /\1 >

36

Repair Algorithm: Example

[Generating templates] [Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

 Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

< (O > 05 < /\1 >
Try to replace O with [C].

37

Repair Algorithm: Example

[Generating templates] [Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

 Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

< (@)1 >0 </A1T> > (0 A G3) A (2, A=y, A =y)

38

Repair Algorithm: Example

[Generating templates] [Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

 Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

< (7)1 >0 </\1 > > (fp A @2) N (—dy, A=y A=)
Constraints for P
P = {<ab></ab>, <a>ab} (’Ula N\ Ullj) A (U‘f A (’U(Q1 A\ ”US))

O, can be replaced with the character set that contains a and b.

39

Repair Algorithm: Example

[Generating templates]

[Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

* Checks if there are multiple bracketing-only paths for for each [, that reach a

same character

Generate constraints

' > (p A) A (2 A=y A _'qb%,)//,_@

Constraints for RWS1U

40

Repair Algorithm: Example

[Generating templates] [Searching assignment]

Input: r=<()>."</\1 > P = {<ab></ab>, <a>ab} N = {<a>, <a>, <a><ab>}

 Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

< (07)1 >0 < /A1 > > (¢ A Go) A (2, A=y A=) A by
If it is satisfiable, replace O with ﬂ Solve the constraints by
the character set. an SMT solver.

<([™>1%)1>["<]1*</\1>

41

Evaluation

Research Questions:

1. Can REMEDY repair vulnerable regexes efficiently?
2. Can REMEDY find high-quality regexes?

Benchmark:

ReDoS data set [Davis+ 2018]
* It contains real-world regexes in Node.js (JavaScript) and
Python core libraries.

RQ1. Can REMEDY repair vulnerable regexes efficiently?

REMEDY could solved 82.1% of regexes within 0.97 seconds on average.

100
c

s
s

=
o

754

~
w

S0

Solved(179) Average(s)

Number of regular expressio
Number of regular expression

REMEDY 132 1.54
REMEDY-0 119 1.08 ®) -
REMEDY'h 147 097 T 5 10 15 20 279 5 10 15 20

Running time (s] Running time (s]

(a) Running times of REMEDY (b) Running times of REMEDY-0

Fig. 6: Results of the repairs.

43

Regarding RQ2:
What is “high-quality”?

In PBE scenario, the user wants to obtain what the user intended as output.

Therefore, the repairs that are similar to the original ones are often
considered good in PBE scenario [Pan+ 2019].

Regex written by the user: What the user intended:
F@.*[].* [r@]*@[*@]*[.].¥

\ /

It is vulnerable but similar to what the user intended.

44

RQ2. Can REMEDY find high-quality regexes?

About 81% of regexes were repaired within the small edit distances (12).

Additionally, the average ratio of change was 24.3%.

60 ' 30
50 25
40 20
30 15
20 10

10 5

0 T 0
0 30 60 90 120 150 180 0 20 40 60 80 100

Edit distance Percentage of changes

(a) Edit distances. (b) Percentages of changes.

Fig. 9: Histograms for repair quality.

Outline

Real-World Regexes

ReDoS Vulnerabilities of Real-World Regexes
RWS1U and Repair Problem

Repair Algorithm and Evaluation

Conclusion

46

Conclusion

We introduced
1. the definition of ReDoS vulnerability of real-world regexes,
2. the condition for ReDoS invulnerability and the repair problem, and

3. the algorithm for solving the repair problem.

Artifact:

Artifact (REMEDY) is available!

or
github.com/NariyoshiChida/SP2022

47

