
Repairing DoS Vulnerability of Real-World Regexes

1

Nariyoshi Chida1,2 and Tachio Terauchi2
1NTT Security Japan※; 2Waseda University

@S&P 2022
25 May 2022

※ Temporary transfer from NTT Corporation

Regular Expressions (Regexes)

Regexes are ubiquitous in modern software development.

2

Sanitizing user inputs:

General purpose libraries:

Extracting data from unstructured text:

IoC extraction from threat reports

^([0-9]{1,3}[.]){3}[0-9]{1,3}$

: regex engine …

Regular Expressions (Regexes)

Regexes are ubiquitous in modern software development.

3

Sanitizing user inputs:

General purpose libraries:

Extracting data from unstructured text:

IoC extraction from threat reports

^([0-9]{1,3}[.]){3}[0-9]{1,3}$

: regex engine …

But unfortunately…

Regexes are Hard!

Writing (or repairing) regexes are difficult…

4

🙂

I need a regex for validating
an email address.

Prepare the regex
(write manually or reuse it from StackOverflow)

Prepared regex:

Test cases:

It doesn’t work.
How should I fix it?

Too complex to repair…

[Michael+ 2019]

Programming-By-Example (PBE)

One prominent approach to improve this situation is

5

👌

writing regexes with PBE method.

😄

[Lee+ 2016] [Pan+ 2019] [Chen+ 2020]…

PBE tools

positive examples (strings to be accepted)
negative examples (strings to be rejected)

Prepared regex:

Test cases:
Repaired regex

Reflect users’ intentions by examples.

Consistent with all examples
(i.e., correct regex).

6

Now, are we free from the difficulties of regexes?

7

Now, are we free from the difficulties of regexes?

No!
We are still facing the difficulties of their vulnerabilities
called regex denial of services (ReDoS).

Indeed, the existing PBE methods may generate vulnerable regexes.
[Li+ 2020]

Regex Denial of Service (ReDoS)

ReDoS is the vulnerability that causes the regex matching
algorithm to take super linear time.

8

ReDoS is a significant threat to our society

In this talk

We introduce a tool called REMEDY that rectifies this situation.

9

(Possibly incorrect and vulnerable)
real-world regex

Positive and negative examples

Correct and invulnerable
real-world regexREMEDYREMEDY

Input: Output:

In this talk

We introduce a tool called REMEDY that rectifies this situation!

10

(Possibly incorrect and vulnerable)
real-world regex

Positive and negative examples

Correct and invulnerable
real-world regexREMEDYREMEDY

Input: Output:

Importantly, our method can handle the regexes
that have real-world extensions such as
• lookarounds,
• capturing groups, and
• Backreferences.

Challenges & Contributions

1. The Definition of ReDoS vulnerability of real-world regexes
A novel formal semantics and the time complexity of backtracking matching
algorithm for real-world regexes

2. The Repair Problem
A novel condition called real-world strong 1-unambiguity (RWS1U) and
formalize the corresponding PBE repair problem (RWS1U repair problem)

3. Algorithm
An algorithm for solving the RWS1U repair problem

11

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

12

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

13

Real-World Regexes

Syntax:

14

Real-World Regexes

Syntax:

15

Standard

Real-world extensions

Real-World Regexes

Syntax:

16

[C] is a character set. C is a set of characters.
We sometimes write a for [{a}].

Example:
[a-cz] matches one of the characters a, b, c, and z.

Real-World Regexes

Syntax:

17

Example:

(r)i is a capturing group and it stores the matched string with the index i.
¥i is a backreference and it refers to the string captured by (r)i.

<(.*)1>.*</¥1> <html>…</html> ⇨ accept
<html>…</body> ⇨ reject (¥1 fails)

(.*)1 captures the string html ¥1 refers to the string html

Real-World Regexes

Syntax:

18

Example:

Lookaheads attempt to match r without any character consumption.
Positive lookahead (?=r) succeeds if r succeeds.
Negative lookahead (?!r) succeeds if r fails.

foo@example.com ⇨ accept
fooexamle.co.jp ⇨ reject

((?=.*@) fails since there is no @)

(?=.*@).*

Real-World Regexes

Syntax:

19

Example:

Fixed-length Lookbehinds look back and attempt to match x without
any character consumption.

foo@example.com ⇨ accept
fooexamle.co.jp ⇨ reject

((?<!jp) fails since the suffix is “jp”.

.*(?<!jp)

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

20

ReDoS Vulnerabilities of Real-World Regexes

ReDoS vulnerability concerns the complexity of backtracking
matching algorithm.
Therefore, we define the semantics that models the behavior of
backtracking matching algorithm by the matching relation .

21

Rules of the Matching Relation

22

Example:
Matching of (a*)* with the input string ab

23

ReDoS Vulnerabilities of Real-World Regexes

Definition (Running time):

24

For a regex r and a string w, we define the running time of the backtracking
matching algorithm on r and w, Time(r,w), to be the size of the derivation tree
of .

Definition (Vulnerable regexes):
We say that a regex r is vulnerable if .

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

25

How can we guarantee ReDoS invulnerability?

The root cause of ReDoS is backtrackings due to the ambiguity.
 We modify a regex to eliminate the ambiguity.

26

[^@]*@[^@]*[.].*
Disambiguate

.*@.*[.].*

It’s too relaxed!
(.* and .* do not need to accept the character @.)

Regex for an email address:

How can we guarantee ReDoS invulnerability?

The root cause of ReDoS is backtrackings due to the ambiguity.
 We modify a regex to eliminate the ambiguity.

27

[^@]*@[^@]*[.].*
Disambiguate!

.*@.*[.].*

It’s too relaxed!
(.* and .* do not need to accept the character @.)

Regex for an email address:We defined a grammatical condition sufficient to
ensure ReDoS invulnerability called
real-world strong 1-unambiguity (RWS1U).

Extension of strong 1-unambiguity [Koch and Scherzinger 2007].
 We’ll explain this next (see paper for formal def.)

Real-World Strong 1-Unambiguity (RWS1U)

28
AST

[1]1

Bracketing: Extended NFA translation:Lookahead removal:

Replace lookaheads with ε

[2
*]2

[3
 abc]3

[4]4

RWS1U enforces that the matching algorithm can
determine which subexpression to match next by
looking at the next character in the input string.

Real-World Strong 1-Unambiguity (RWS1U)

29
AST

[1]1

Bracketing: Extended NFA translation:Lookahead removal:

Replace lookaheads with ε

[2
*]2

[3
 abc]3

[4]4

RWS1U enforces that the matching algorithm can
determine which subexpression to match next by
looking at the next character in the input string.

RWS1U violation

The character has two bracketing-only paths.
(Therefore, violates RWS1U.)

RWS1U Repair Problem

30

Input:

Output:

• (Possibly incorrect and vulnerable) regex :
• Set of positive examples : P
• Set of negative examples : N

• Regex that is consistent with examples,
 satisfies RWS1U, and
 the edit distance from the input regex is minimal.

‘ For correctness
For ReDoS invulnerability

For quality

RWS1U Repair Problem

31

Input:

Output:

• (Possibly incorrect and vulnerable) regex :
• Set of positive examples : P
• Set of negative examples : N

• Regex that is consistent with examples,
 satisfies RWS1U, and
 the edit distance from the input regex is minimal.

‘ For correctness
For ReDoS invulnerability

For quality

The RWS1U repair problem is NP-hard!
We can show this by a reduction from Exact Cover
which is NP-complete.
The proof can be found in our paper.

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

32

Repair Algorithm

Our repair algorithm is

33

Enumerative Search

Pruning by Approximations

SMT-based Constraint Solving

+

+
Builds on [Pan+ 2019].

High Level Repair Algorithm

34

P

N

‘Searching assignment

Generating templates Pruning

Input: Output:

Correct and invulnerable regex

Repair Algorithm: Example

35

Generating templates Searching assignment

Input:

P

N

=

=

=

{<ab></ab>, <a>ab}

{<a>, <a>, <a><ab>}

Repair Algorithm: Example

36

Generating templates Searching assignment

Input: = , ,

• Replace the subexpressions with holes ◻

After some iterations

Repair Algorithm: Example

37

Generating templates Searching assignment

Input: = , ,

• Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Try to replace ◻ with [C].

Repair Algorithm: Example

38

Generating templates Searching assignment

Input: = , ,

• Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

Repair Algorithm: Example

39

Generating templates Searching assignment

Input: = , ,

• Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

◻1 can be replaced with the character set that contains a and b.

Constraints for P

Repair Algorithm: Example

40

Generating templates Searching assignment

Input: = , ,

• Checks if there are multiple bracketing-only paths for for each [i that reach a
same character

Generate constraints

Constraints for RWS1U

…

Repair Algorithm: Example

41

Generating templates Searching assignment

Input: = , ,

• Checks if the template can be instantiated to a regex that satisfies
the required conditions by replacing its holes with some sets of characters

Generate constraints

Solve the constraints by
an SMT solver.

If it is satisfiable, replace ◻ with
the character set.

Evaluation

Research Questions:

Benchmark:

42

1. Can REMEDY repair vulnerable regexes efficiently?
2. Can REMEDY find high-quality regexes?
…

ReDoS data set [Davis+ 2018]
• It contains real-world regexes in Node.js (JavaScript) and

Python core libraries.

RQ1. Can REMEDY repair vulnerable regexes efficiently?

REMEDY could solved 82.1% of regexes within 0.97 seconds on average.

43

Regarding RQ2:
What is “high-quality”?

In PBE scenario, the user wants to obtain what the user intended as output.

Therefore, the repairs that are similar to the original ones are often
considered good in PBE scenario [Pan+ 2019].

44

.*@.*[.].* [^@]*@[^@]*[.].*
What the user intended:Regex written by the user:

It is vulnerable but similar to what the user intended.

RQ2. Can REMEDY find high-quality regexes?

About 81% of regexes were repaired within the small edit distances (12).

Additionally, the average ratio of change was 24.3%.

45

Outline

• Real-World Regexes
• ReDoS Vulnerabilities of Real-World Regexes
• RWS1U and Repair Problem
• Repair Algorithm and Evaluation
• Conclusion

46

We introduced
1. the definition of ReDoS vulnerability of real-world regexes,

2. the condition for ReDoS invulnerability and the repair problem, and

3. the algorithm for solving the repair problem.

47

Artifact (REMEDY) is available!

github.com/NariyoshiChida/SP2022
or

Artifact:

Conclusion

