CoRe Challenge 2022/2023: International Competition for Combinatorial Reconfiguration

Takehide Soh (Kobe University)

joint work with Takehiro Ito, Yoshio Okamoto, Tomoya Tanjo

> Shonan Meeting 180 October 3rd, 2023

Background

- Theoretical aspects of Combinatorial Reconfiguration have been actively studied.
 - According to a survey by Dr. D. A. Hoang, researchers from over 470 individuals across 165 institutions in 34 countries have published papers related to combinatorial reconfiguration.
 - The annual publication count has increased approximately 15 times from 2008 to 2021.
- Practical aspects of Combinatorial Reconfiguration have just begun.
- In 2020, CoRe project was launched in Japan supported by "KAKENHI Grant-in-Aid for Transformative Research Areas (B)".

Background

- Theoretical aspects of Combinatorial Reconfiguration have been actively studied.
 - According to a survey by Dr. D. A. Hoang, researchers from over 470 individuals across 165 institutions in 34 countries have published papers related to combinatorial reconfiguration.
 - The annual publication count has increased approximately 15 times from 2008 to 2021.
- Practical aspects of Combinatorial Reconfiguration have just begun.
- In 2020, CoRe project was launched in Japan supported by "KAKENHI Grant-in-Aid for Transformative Research Areas (B)".

An issue on starting practical studies

- We do not have any baseline.
 - instances to be used for evaluation
 - solvers to be compared

Summary of this talk

 To make a baseline of the practical study of combinatorial reconfiguration, we hold international competitions called CoRe Challenge 2022/2023.

Achievements via the competition

- List of runnable solvers and results.
- Input file format.
- List of instances that distinguish the characteristics of solvers.
- Showing the current performance of the state-of-the-art solvers.

Effects after the competition

There are already five papers using the challenge resources:

- [Bousquet+, J. Combinatorics 2023], [Christen+, HSDIP 2023],
- [Ito+, CPAIOR 2023], [Yamada+, JELIA 2023], [Hirate+, JELIA 2023]

- CoRe Challenge is an international competition aiming to provide a baseline for practical studies.
- CoRe Challenge 2022/2023 targets Independent Set Reconfiguration (ISR) problems.

Why is ISR selected?

- It is one of the most theoretically well-studied reconfiguration problems.
- ISR is PSPACE-complete, which implies that there exist instances such that even a shortest reconfiguration sequence requires super polynomial steps.
- ISR is frequently used to prove the PSPACE-completeness of other problems.

What is ISR? By example

Input

- an undirected graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7\}$, $E = \{\{1, 2\}, \{1, 3\}, \{2, 7\}, \{3, 4\}, \{3, 5\}, \{4, 6\}, \{5, 6\}\}$
- the start state $I_s = \{3, 6, 7\}$
- the target state $I_t = \{4, 5, 7\}$
- reconfiguration rule (token jump, etc.)

For this instance, a reconfiguration sequence under the **token jump rule** (token can jump to any node) exists.

- Can we solve ISR instances efficiently by AI planners or BMC solvers?
- Which solver is better?
- How do they scale in terms of the number of nodes and the length?
- Which types of instances are difficult?
- How much does the reconfiguration length extend for a limited number of nodes?

- Can we solve ISR instances efficiently by AI planners or BMC solvers?
- Which solver is better?
- How do they scale in terms of the number of nodes and the length?
- Which types of instances are difficult?
- How much does the reconfiguration length extend for a limited number of nodes?

CoRe Challenge will answer those questions (I hope).

• Solver Track

- Contestants develop their own ISR solvers.
- Metrics are:
 - ★ Existent
 - ★ Shortest
 - ★ Longest
- We distinguish two types of solvers because Portfolio solvers are often easier to improve solver performance (and to encourage the development of new single algorithm).
 - Single engine (single strategy)
 - ★ Portfolio (multiple strategy)
- Used techniques in submission: IDA*, BMC, ZDD.

• Graph Track

- Contestants create their own ISR instances with a given number of nodes.
- The one with the longest-shortest step wins.

Finally, there are submissions from 8 countries (12 universities and two companies).

CoRe Challenge 2022/2023 Setting (Solver Track)

CoRe Challenge 2022/2023

- solver tracks:
 - benchmark instances: 369 for 2022, 693 for 2023.
 - 11 solvers (AI Planner, BMC, ZDD) participated in a total

Submission/Evaluation in 2023

- Participants will do:
 - clone the template repository web, including a solver checker.
 - edit the repository and add a runnable Docker file.
 - submit the private GitHub repository.
- 16 machines are used for running docker-wrapped solvers.
 - CPU: Core i5 12400 (2.5GHz)
 - Mem: 64GB

IDA*

- Use iteratively deepening A* (generalization of Dijkstra Algorithm).
- Implementation: Scorpion (state-of-the-art AI planner), original

BMC

- Construct a formula Ψ_k which is true iff there is a sequence of length k between I_s and I_t.
- Find Ψ_k from k = 1 and increment it until we obtain SAT.
- Implementation: NuSMV, SAT-based, ASP-based

ZDD

- Construct ZDD representing all independent sets of G.
- By maintaining ZDD, execute a breadth-first search from Is to It.

Result: Solver Track (Existent) with 369 instances

• We evaluate the number of instances that contestants outputted "yes/no" and "reconfiguration sequence (if yes)".

Single Engine								
	1st	IDA*	PARIS single (@haz-single)	299 (275/24)				
	2nd	BMC	recongo (@YuyaYamada-N)	244 (238/6)				
	3rd	BMC	@toda5603	207 (207/0)				
Portf	Portfolio							
	1st	IDA*	PARIS (@haz)	334 (288/46)				
	2nd	IDA*	@telematik-tuhh	326 (280/46)				
	3rd	IDA*	PARIS single (@haz-single)	299 (276/24)				

Result: Solver Track (Shortest) with 369 instances

 We evaluate the number of instances that contestants outputted reconfiguration sequences having the shortest length among all contestants.

Single Engine			
1st	BMC	recongo (@YuyaYamada-N)	238
2nd	???	@tigrisg	232
3rd	IDA*	PARIS single (@haz-single)	213

Portfolio				
	1st	IDA*	@telematik-tuhh	280
	2nd	IDA*	PARIS (@haz)	275
	3rd	BMC	recongo (@YuyaYamada-N)	238

The longest stepper is @junkawahara (ZDD), which solves an instance having 90101 steps.

Result: Solver Track (Longest) with 369 instances

- We evaluate the number of instances that contestants outputted reconfiguration sequences having the longest length among all contestants.
- Note that a sequence cannot contain any loop, i.e., two identical independent sets.

Single Engine						
1st	IDA*	PARIS single (@haz-single)	144			
2nd	BMC	recongo (@YuyaYamada-N)	115			
3rd	BMC	ReconfAIGERation (@Froleyks)	54			

Portfolio					
	1st	IDA*	PARIS single (@haz-single)	143	
2	2nd	BMC	recongo (@YuyaYamada-N)	115	
;	3rd	IDA*	PARIS (@haz)	90	

10 nodes.								
2nd	@telematik-tuhh @tpierron @akkyhowa	10 10 9	proven to be optimal					

50 nodes.		
1st	@tpierron	3,410
2nd	PARIS (@haz)	3,069
3rd	@karakasaDcFd	3,069

100 nodes.		
2r	t @tpierron d PARIS (@haz) d @karakasaDoEd	3,495,250 3,145,725 3,145,725
Зr		

Note: this result is under review by participants.

Series	#Ins.	max. N.	max. L.	IDA*	BMC	ZDD
grid	49	40000	8	2	2	2
color04	202	10000	112	198	200	76
queen	48	10000	94	42	25	8
handcrafted	6	36	69	5	5	5
ph-isr	36	9205	31	1	0	1
random	200	520	115	139	193	35
exp. long	152	912	442175	28	7	113
Total	693			415	432	240

- Theoretical aspects of Combinatorial Reconfiguration have been actively studied.
- Practical aspects should be studied also, but it is an issue that we do not have any baseline.
- **CoRe Challenge** is an international competition aiming to provide the baseline for ISR and Combinatorial Reconfiguration.

Achievements

- List of runnable solvers.
- Input file format.
- List of instances that distinguish the characteristics of solvers.
- Showing the current performance of the state-of-the-art solvers.

There are already five papers using the resources of the challenge.

- CoRe Challenge 2022 web
- CoRe Challenge 2023 web
- SATracer web