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Takeaways

Need for incremental optimization techniques motivated by
applications

SAT-based MaxSAT approaches hold promise for enabling high levels
of incrementality

Promising avenue for further work!

Solvers & applications
Figuring out the “right” combinations of solving techniques & what
make sense / can/cannot be made incremental
IPAMIR interface for solvers & applications
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Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding, removing, or strengthening constraints
modifying objective function

Solving each instance from scratch often too costly:
aim to reuse information obtained during previous calls
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In This Talk

Overview of recent developments in Incremental MaxSAT
Niskanen, Berg, and Järvisalo [2021, 2022], MaxSAT Eval 2022 + applications

Unsatisfiability-based optimization:
Particularly suited for incrementality (?)

Forms of incrementality

API for incremental MaxSAT solvers and their applications

Application case studies

Incremental IHS MaxSAT solving
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Motivation

Maximum satisfiability (MaxSAT)
Bacchus, Järvisalo, and Martins [2021]

Optimization paradigm based on Boolean satisfiability (SAT)

minimize: linear objective function over 0-1 variables
subject to: constraints expressed in propositional logic

Suitable declarative modelling language for various real-world
optimization problems involving logical constraints

Significant progress in solving technology over the past 10 years

state-of-the-art solvers build on the success of SAT solvers

Key to Success of MaxSAT

Ability of SAT solvers to efficiently explain unsatisfiability
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Incremental MaxSAT

Incremental MaxSAT

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality

Lifting Incrementality to MaxSAT

Aim for solving a sequence of related MaxSAT instances efficiently,
avoiding computation from scratch

Different scenarios call for different forms of incremental changes

adding or removing hard constraints
modifying the objective function
solving under assumptions: partial assignments to variables

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 6 / 30



Incremental MaxSAT

Adding Constraints

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm: Counterexample-guided abstraction refinement
with various instantiations employing MaxSAT

Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1
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Incremental MaxSAT

Changes to Objective Function Coefficients

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

For example: Learning classifiers with the AdaBoost algorithm,
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1
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Incremental MaxSAT

Optimizing under Different Assumptions

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Example: Timetabling under disruptions, time or room slots may become
unavailable

Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Unlike hard constraints, assumptions are revertable

removal of hard constraints can be simulated with assumptions
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Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Aim for a generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

+ other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values
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Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

// Construct a MaxSAT solver and return a pointer to it.

void * ipamir_init ();

// Deallocate all resources of the MaxSAT solver.

void ipamir_release (void * solver );

// Add a literal to a hard clause or finalize the clause with zero.

void IPAMIR_ADD_HARD (void * solver , int32_t lit_or_zero );

// Add a weighted soft literal.

void IPAMIR_ADD_SOFT_LIT (void * solver , int32_t lit , uint64_t weight );

// Assume a literal for the next solver call.

void IPAMIR_ASSUME (void * solver , int32_t lit);

// Solve the MaxSAT instance under the current assumptions .

int ipamir_solve (void * solver );

// Compute the cost of the solution.

uint64_t ipamir_val_obj (void * solver );

// Extract the truth value of a literal in the solution.

int32_t ipamir_val_lit (void * solver , int32_t lit);

// Set a callback function for terminating the solving procedure.

void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )(void * state ));

Interface and example applications openly available:
https://bitbucket.org/coreo-group/ipamir
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Incremental MaxSAT

IPAMIR

INPUT SOLVING

SAT or OPTIMAL

UNSAT

ERROR
init

add
assume

solve

interrupted

solution found

no solution

invalid calls

solve

solve

add
assume

add
assume

val
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Incremental MaxSAT

MSE 2022 Incremental track: Submissions

5 benchmark submissions:

Bi-objective Boolean optimization: adding hard clauses

MLIC-SeeSaw: adding hard clauses + assumptions

Extension enforcement in abstract argumentation:
adding hard clauses

Learning boosted decision trees via AdaBoost:
changing weights of soft literals

Proof obligations in bit-level PDR: assumptions

3 solver submissions:

EvalMaxSAT: core-guided

iMaxHS: implicit hitting set based

UWrMaxSat (2 versions): core-guided (+ ILP)
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Incremental MaxSAT

Incremental track: Results

Solver rank (number of solved instances)

BiOptSat SeeSaw ExtEnf AdaBoost PDR

EvalMaxSAT 4 (28) 1 (19) 2 (40) 4 (16) 1 (44)
iMaxHS 3 (45) 2 (18) 1 (48) 1 (23) 3 (36)
UWrMaxSat 1 (50) 3 (6) 3 (38) 2 (17) 2 (38)
UWrMaxSat+SCIP 2 (50) N/A 4 (37) 3 (17) 4 (31)

Solver performance application-dependent

EvalMaxSAT, iMaxHS, and UWrMaxSat ranked first on some
benchmark, all solvers ranked second on some benchmark
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Incremental MaxSAT

Incremental track: Observations

Adaptive benchmarks: the sequence of IPAMIR calls depends on the
results of previous solve calls

How to clearly rank solvers in this case?

Unit tests and fuzzers for IPAMIR?

Likely much room for solver performance improvements!

MSE’23 incremental track failed due to lack of participants

2024?
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Incremental MaxSAT

Incremental MaxSAT Solving
(IHS style)
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Incremental MaxSAT

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies optimally

core: partial assignment over objective function variables which
cannot be extended to satisfy the constraints

SAT solver as core extractor

hs: a hitting set over a set of cores

cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 17 / 30



Incremental MaxSAT

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies optimally

core: partial assignment over objective function variables which
cannot be extended to satisfy the constraints

SAT solver as core extractor

hs: a hitting set over a set of cores

cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 17 / 30



Incremental MaxSAT

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies optimally

core: partial assignment over objective function variables which
cannot be extended to satisfy the constraints

SAT solver as core extractor

hs: a hitting set over a set of cores

cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 17 / 30



Incremental MaxSAT

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies optimally

core: partial assignment over objective function variables which
cannot be extended to satisfy the constraints

SAT solver as core extractor

hs: a hitting set over a set of cores

cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 17 / 30



Incremental MaxSAT

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]
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Incremental IHS-based MaxSAT solving

Incremental IHS
Niskanen, Berg, and Järvisalo [2021, 2022]

Observations:

Add a constraint or a term to the objective function?
Or change objective variable coefficients?
Extracted cores still valid

Cores can be preserved between solver invocations
only objective needs to be altered in the IP solver (for hitting sets)

The SAT solver knows nothing about the objective

add constraints directly to the SAT solver
no need to reinitialize

Assumptions require more care: conditional cores

no need to reset the SAT solver

IP solver reinitialized with restrictions of all conditional cores valid
under current assumptions
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Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Realizing incrementality requires a non-trivial amount of engineering
. . . due to e.g.

Simplifications before solution
variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques to account for . . . e.g.

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]
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Applications

Practical Benefits of Incrementality

changing objective coefficients
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Applications

Learning (boosted) decision trees
Narodytska, Ignatiev, Pereira, and Marques-Silva [2018]; Hu, Siala, Hebrard, and Huguet
[2020]

Decision Trees:

Input:

Examples and their classes
Max depth U

Learn tree T s.t:

Depth(T ) ≤ U
|{ei | ci = T (ei )}| is maximized.

Incrementality: AdaBoost

Weights = priorities of examples.
Learn diverse trees that prioritize
different examples.

Ex. rain wind outside ci T (ei )

e1 yes no yes 0 1
e2 yes yes yes 1 1
e3 no yes yes 0 0
e4 yes no no 1 0

wind

rain

1 0

outside

1 0

y

y n

n

y n
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Applications

Results
Decision Trees
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Applications

Learning interpretable decision rules
Malioutov and Meel [2018]

Decision Rules:

Input:

examples and their classes
integer λ

Learn rule R minimizing:∑
C∈R

|C |+ λ · |{ei | ci ̸= R(ei )}|

Incrementality

λ = trade-off between interpretability
and accuracy.
Learn rules for different λ.

Ex. rain wind outside ci T (ei )

e1 yes no yes 0 1
e2 yes yes yes 1 1
e3 no yes yes 0 0
e4 yes no no 1 0

R = (xrain) ∧ (xwind ∨ xoutside)
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Applications
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Decision Rules
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Applications

MaxSAT-based Column Generation
Computing the η Inconsistency Measure Niskanen, Kuhlmann, Thimm, and Järvisalo [2023]

Iη(K) is the optimal value of the following linear program (LP),
where Ω(At) is the set of all truth assignments τ over At.

minimize 1− ξ

subject to
∑

τ∈Ω(At)

pτ = 1,

∑
τ |=ϕ

pτ ≥ ξ ∀ϕ ∈ K,

pτ ≥ 0 ∀τ ∈ Ω(At).

Problem: exponential number of columns (variables) pτ !
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Applications

MaxSAT-based Column Generation
Computing the η Inconsistency Measure Niskanen, Kuhlmann, Thimm, and Järvisalo [2023]

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

Iterative approach to computing Iη(K): employ an LP solver on a
restricted linear program, and a MaxSAT solver for generating a
new column.

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

An initial set of truth assignments I ⊆ Ω(At) obtained by iteratively
calling a SAT solver for a satisfiable truth assignment for each ϕ ∈ K.
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ables pτ for assignments τ ∈ I , instead of all τ ∈ Ω(At).
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Pricing problem generates a column pτ with τ ̸∈ I which may im-
prove 1 − ξ∗ via minimizing reduced cost RC (pτ ), defined using the
optimal dual solution.
This is equivalent to an incremental MaxSAT problem.
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Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

Restricted master problem includes columns corresponding to vari-
ables pτ for assignments τ ∈ I , instead of all τ ∈ Ω(At).

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

Solving the restricted LP yields an optimal solution ξ∗ and the corre-
sponding
optimal dual solution.

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

Pricing problem generates a column pτ with τ ̸∈ I which may im-
prove 1 − ξ∗ via minimizing reduced cost RC (pτ ), defined using the
optimal dual solution.
This is equivalent to an incremental MaxSAT problem.

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

If minimum RC(pτ ) is negative, add assignment τ to I and continue.

LP solver
Restricted master problem:
columns pτ for τ ∈ I

MaxSAT solver
Pricing problem:
generate column pτ

Input: K, I ⊊ Ω(At)

optimal ξ∗ + dual

RC (pτ ) < 0

I = I ∪ {τ}

Return: 1− ξ∗

RC (pτ ) ≥ 0

If minimum RC(pτ ) is non-negative, the current solution 1 − ξ∗ is op-
timal.
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Applications

Inconsistency measurement:
Incremental vs non-incremental MaxSAT
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Conclusion

Summary

IPAMIR: incremental API for MaxSAT

provides a standard interface to facilitate the development of solvers
and applications

Incremental MaxHS: incremental MaxSAT solver

supports all IPAMIR functionality
preserves cores and does not reset SAT solver between invocations

Applications: clear benefit from incrementality

Going Further

More applications — understanding limits and realizing potential

Realizing again the MSE incremental track?

Making hitting set computations more incremental

Extensions beyond MaxSAT, e.g. incremental PBO-IHS
Smirnov, Berg, and Järvisalo [2021, 2022]
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Thank you for your attention!
matti.jarvisalo@helsinki.fi

Järvisalo (U Helsinki) Incremental MaxSAT Oct 3, 2023 30 / 30

matti.jarvisalo@helsinki.fi


Conclusion

Bibliography I

Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In J. Christopher Beck,
editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages
641–651. Springer, 2017. doi: 10.1007/978-3-319-66158-2 41.

Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, chapter 24, pages 929–991. IOS Press, 2021. doi: 10.3233/FAIA201008.

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat solving. In Luca Pulina and
Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference,
Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294. Springer,
2020. doi: 10.1007/978-3-030-51825-7 20.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In Jimmy Ho-Man Lee,
editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia,
Italy, September 12-16, 2011, Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi: 10.1007/978-3-642-23786-7 19.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte, editor,
Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013, Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:
10.1007/978-3-642-40627-0 21.
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